Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Rapidly rotating turbulent flow is characterized by the emergence of columnar structures that are representative of quasi-two-dimensional behavior of the flow. It is known that when energy is injected into the fluid at an intermediate scale L f, it cascades towards smaller as well as larger scales. In this paper we analyze the flow in the inverse cascade range at a small but fixed Rossby number, Ro f≈0.05. Several numerical simulations with helical and nonhelical forcing functions are considered in periodic boxes with unit aspect ratio. In order to resolve the inverse cascade range with reasonably large Reynolds number, the analysis is based on large eddy simulations which include the effect of helicity on eddy viscosity and eddy noise. Thus, we model the small scales and resolve explicitly the large scales. We show that the large-scale energy spectrum has at least two solutions: one that is consistent with Kolmogorov-Kraichnan-Batchelor-Leith phenomenology for the inverse cascade of energy in two-dimensional (2D) turbulence with a ∼k⊥-5/3 scaling, and the other that corresponds to a steeper ∼k⊥-3 spectrum in which the three-dimensional (3D) modes release a substantial fraction of their energy per unit time to the 2D modes. The spectrum that emerges depends on the anisotropy of the forcing function, the former solution prevailing for forcings in which more energy is injected into the 2D modes while the latter prevails for isotropic forcing. In the case of anisotropic forcing, whence the energy goes from the 2D to the 3D modes at low wave numbers, large-scale shear is created, resulting in a time scale τ sh, associated with shear, thereby producing a ∼k -1 spectrum for the total energy with the horizontal energy of the 2D modes still following a ∼k⊥-5/3 scaling. © 2012 American Physical Society.

Registro:

Documento: Artículo
Título:Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence
Autor:Sen, A.; Mininni, P.D.; Rosenberg, D.; Pouquet, A.
Filiación:Institute for Mathematics Applied to Geosciences (IMAGe), CISL, NCAR, P.O. Box 3000, Boulder, CO 80307-3000, United States
Department of Applied Mathematics, 526 UCB, University of Colorado, Boulder, CO 80309-0526, United States
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Columnar structures; Eddy viscosity; Forcing function; Forcings; Helicities; Large-scale energy spectrum; Nonuniversality; Per unit; Quasi-two-dimensional behavior; Rossby numbers; Rotating turbulence; Small scale; Time-scales; Total energy; Two-dimensional (2D) turbulence; Wave numbers; Anisotropy; Aspect ratio; Reynolds number; Spectroscopy; Three dimensional computer graphics; Shear flow
Año:2012
Volumen:86
Número:3
DOI: http://dx.doi.org/10.1103/PhysRevE.86.036319
Título revista:Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Título revista abreviado:Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
ISSN:15393755
CODEN:PLEEE
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_15393755_v86_n3_p_Sen.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v86_n3_p_Sen

Referencias:

  • Hough, S.S., (1897) Philos. Trans. R. Soc. London A, 189, p. 201. , PTRMAD 1364-503X 10.1098/rsta.1897.0009
  • Proudman, J., (1916) Proc. R. Soc. London A, 92, p. 408. , 1364-5021 10.1098/rspa.1916.0026
  • Taylor, G.I., (1917) Proc. R. Soc. London A, 93, p. 92
  • Lamriben, C., Cortet, P.P., Moisy, F., (2011) Phys. Rev. Lett., 107, p. 024503. , PRLTAO 0031-9007 10.1103/PhysRevLett.107.024503
  • Morize, C., Moisy, F., Rabaud, M., Decaying grid-generated turbulence in a rotating tank (2005) Physics of Fluids, 17 (9), pp. 1-11. , DOI 10.1063/1.2046710, 095105
  • Mininni, P.D., Pouquet, A., (2010) Phys. Fluids, 22, p. 035106. , PHFLE6 1070-6631 10.1063/1.3358471
  • Sprague, M., Julien, K., Knoblach, E., Werne, J., (2006) J. Fluid Mech., 551, p. 141. , JFLSA7 0022-1120 10.1017/S0022112005008499
  • Grooms, I., Julien, K., Weiss, J.B., Knobloch, E., (2010) Phys. Rev. Lett., 104, p. 224501. , PRLTAO 0031-9007 10.1103/PhysRevLett.104.224501
  • Imazio, P.R., Mininni, P.D., (2011) Phys. Rev. E, 83, p. 066309. , PLEEE8 1539-3755 10.1103/PhysRevE.83.066309
  • Greenspan, H.P., (1968) The Theory of Rotating Fluids, , Cambridge University Press, Cambridge
  • Cambon, C., Turbulence and vortex structures in rotating and stratified flows (2001) European Journal of Mechanics, B/Fluids, 20 (4), pp. 489-510. , DOI 10.1016/S0997-7546(01)01126-8
  • Davidson, P.A., Staplehurst, P.J., Dalziel, S.B., On the evolution of eddies in a rapidly rotating system (2006) Journal of Fluid Mechanics, 557, pp. 135-144. , DOI 10.1017/S0022112006009827, PII S0022112006009827
  • Mahalov, A., Ye Zhou, Analytical and phenomenological studies of rotating turbulence (1996) Physics of Fluids, 8 (8), pp. 2138-2152. , DOI 10.1063/1.868988
  • Smith, L.M., Chasnov, J.R., Waleffe, F., (1996) Phys. Rev. Lett., 77, p. 2467. , PRLTAO 0031-9007 10.1103/PhysRevLett.77.2467
  • Smith, L.M., Waleffe, F., (1999) Phys. Fluids, 11, p. 1608. , PHFLE6 1070-6631 10.1063/1.870022
  • Chen, Q., Chen, S., Eyink, G.L., Holm, D.D., Resonant interactions in rotating homogeneous three-dimensional turbulence (2005) Journal of Fluid Mechanics, 542, pp. 139-164. , DOI 10.1017/S0022112005006324, PII S0022112005006324
  • Kraichnan, R.H., (1967) Phys. Fluids, 10, p. 1417. , PHFLE6 1070-6631 10.1063/1.1762301
  • Davidson, P.A., (2004) Turbulence, , Oxford University Press, Oxford
  • Smith, L.M., Lee, Y., On near resonances and symmetry breaking in forced rotating flows at moderate Rossby number (2005) Journal of Fluid Mechanics, 535, pp. 111-142. , DOI 10.1017/S0022112005004660
  • Julien, K., Rubio, A.M., Grooms, I., Knobloch, E., (2012) Geophys. Astrophys. Fl. Dyn, 106, p. 392. , 0309-1929 10.1080/03091929.2012.696109
  • Baerenzung, J., Politano, H., Ponty, Y., Pouquet, A., Spectral modeling of turbulent flows and the role of helicity (2008) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77 (4), p. 046303. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.77.046303&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.77.046303
  • Baerenzung, J., Mininni, P.D., Pouquet, A., Politano, H., Ponty, Y., (2010) Phys. Fluids, 22, p. 025104. , PHFLE6 1070-6631 10.1063/1.3292008
  • Pouquet, A., Sen, A., Rosenberg, D., Mininni, P.D., Baerenzung, J., unpublished; see also arXiv: 1203.0337 [Physica Scripta (to be published)] (2012); Baerenzung, J., Mininni, P.D., Pouquet, A., Rosenberg, D., (2011) J. Atmos. Sci., 68, p. 2757. , JAHSAK 0022-4928 10.1175/2010JAS3445.1
  • Waleffe, F., (1992) Phys. Fluids A, 4, p. 350. , PFADEB 0899-8213 10.1063/1.858309
  • Craya, A., (1958) Contribution À Lanalyse de la Turbulence Associée À des Vitesses Moyennes, , edited by P. S. T. Ministère de l'Air, Vol. 345 En vente au Service de documentation et d'information technique de l'aéronautique, Paris
  • Herring, J., (1974) Phys. Fluids, 17, p. 859. , PHFLE6 1070-6631 10.1063/1.1694822
  • Lesieur, M., (2008) Turbulence in Fluids, , Springer, New York
  • Newell, A., Rumpf, B., (2011) Ann. Rev. Fluid Mech., 43, p. 59. , ARVFA3 0066-4189 10.1146/annurev-fluid-122109-160807
  • Newell, A., (1969) J. Fluid Mech., 35, p. 255. , JFLSA7 0022-1120 10.1017/S0022112069001108
  • Galtier, S., (2003) Phys. Rev. E, 68, p. 015301. , PLEEE8 1539-3755 10.1103/PhysRevE.68.015301
  • Cambon, C., Jacquin, L., (1989) J. Fluid Mech., 202, p. 295. , JFLSA7 0022-1120 10.1017/S0022112089001199
  • Bellet, F., Godeferd, F.S., Scott, J.F., Cambon, C., Wave turbulence in rapidly rotating flows (2006) Journal of Fluid Mechanics, 562, pp. 83-121. , DOI 10.1017/S0022112006000929, PII S0022112006000929
  • Sagaut, P., Cambon, C., (2008) Homogeneous Turbulence Dynamics, , Cambridge University Press, Cambridge
  • Kraichnan, R.H., Montgomery, D., (1980) Rep. Prog. Phys., 43, p. 547. , RPPHAG 0034-4885 10.1088/0034-4885/43/5/001
  • Brissaud, A., Frisch, U., Leorat, J., Lesieur, M., Mazure, A., (1973) Phys. Fluids, 16, p. 1366. , PHFLE6 1070-6631 10.1063/1.1694520
  • L. Biferale, S. Musacchio, and F. Toschi, arXiv: 1111.1412 (2011); Babin, A., Mahalov, A., Nicolaenko, B., (1996) Eur. J. Mech. B Fluids, 15, p. 291
  • Bourouiba, L., (2008) Phys. Fluids, 20, p. 075112. , PHFLE6 1070-6631 10.1063/1.2958319
  • Teitelbaum, T., Mininni, P.D., (2011) Phys. Fluids, 23, p. 065105. , PHFLE6 1070-6631 10.1063/1.3592325
  • Mininni, P.D., Dmitruk, P., Matthaeus, W.H., Pouquet, A., (2011) Phys. Rev. E, 83, p. 016309. , PLEEE8 1539-3755 10.1103/PhysRevE.83.016309
  • Cambon, C., Rubinstein, R., Godeferd, F.S., Advances in wave turbulence: Rapidly rotating flows (2004) New Journal of Physics, 6, pp. 1-29. , http://www.iop.org/EJ/abstract/1367-2630/6/1/073, DOI 10.1088/1367-2630/6/1/073, PII S1367263004757079
  • Bourouiba, L., Straub, D.N., Waite, M.L., (2012) J. Fluid Mech., 690, p. 129. , JFLSA7 0022-1120 10.1017/jfm.2011.387
  • Mininni, P.D., Rosenberg, D., Reddy, R., Pouquet, A., (2011) Parallel Comput., 37, p. 316. , PACOEJ 0167-8191 10.1016/j.parco.2011.05.004
  • Mininni, P.D., Rosenberg, D., Pouquet, A., (2012) J. Fluid Mech., 699, p. 263. , 0022-1120 10.1017/jfm.2012.99
  • see also arXiv: 1104.5519 (2012); Taylor, G.I., Green, A.E., (1937) Proc. R. Soc. London A, 158, p. 499. , 1364-5021 10.1098/rspa.1937.0036
  • Arnold, V.I., (1972) Prikl. Matem. i Mekh., 36, p. 255
  • Podvigina, O., Pouquet, A., (1994) Physica D, 75, p. 475. , PDNPDT 0167-2789 10.1016/0167-2789(94)00031-X
  • Pouquet, A., Patterson, G.S., (1978) J. Fluid Mech., 85, p. 305. , JFLSA7 0022-1120 10.1017/S0022112078000658
  • Mininni, P.D., Alexakis, A., Pouquet, A., (2009) Phys. Fluids, 21, p. 015108. , PHFLE6 1070-6631 10.1063/1.3064122
  • Pouquet, A., Mininni, P.D., (2010) Phil. Trans. R. Soc. A, 368, p. 1635. , PTRMAD 1364-503X 10.1098/rsta.2009.0284
  • Mininni, P.D., Pouquet, A., (2009) Phys. Rev. E, 79, p. 026304. , PLEEE8 1539-3755 10.1103/PhysRevE.79.026304
  • Kraichnan, R.H., (1965) Phys. Fluids, 8, p. 1385. , PHFLE6 1070-6631 10.1063/1.1761412
  • Zhou, Y., (1995) Phys. Fluids., 7, p. 2092. , PHFLE6 1070-6631 10.1063/1.868457
  • Dubrulle, B., Valdetarro, L., (1992) Astron. Astrophys., 263, p. 387
  • Perry, A.E., Henbest, S., Chong, M.S., (1986) J. Fluid Mech., 165, p. 163. , JFLSA7 0022-1120 10.1017/S002211208600304X
  • Nickels, T.B., Marusic, I., Hafez, S., Chong, M.S., Evidence of the k1-1 law in a high-Reynolds-number turbulent boundary layer (2005) Physical Review Letters, 95 (7), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:95, DOI 10.1103/PhysRevLett.95.074501, 074501
  • Smits, A., McKeon, B.J., Marusic, I., (2011) Ann. Rev. Fluid Mech., 43, p. 353. , ARVFA3 0066-4189 10.1146/annurev-fluid-122109-160753
  • Héas, P., (2012) Tellus A, 64, p. 10962

Citas:

---------- APA ----------
Sen, A., Mininni, P.D., Rosenberg, D. & Pouquet, A. (2012) . Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 86(3).
http://dx.doi.org/10.1103/PhysRevE.86.036319
---------- CHICAGO ----------
Sen, A., Mininni, P.D., Rosenberg, D., Pouquet, A. "Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 86, no. 3 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.036319
---------- MLA ----------
Sen, A., Mininni, P.D., Rosenberg, D., Pouquet, A. "Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 86, no. 3, 2012.
http://dx.doi.org/10.1103/PhysRevE.86.036319
---------- VANCOUVER ----------
Sen, A., Mininni, P.D., Rosenberg, D., Pouquet, A. Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2012;86(3).
http://dx.doi.org/10.1103/PhysRevE.86.036319