Artículo

Georg, S.; Kabuss, J.; Weidinger, I.M.; Murgida, D.H.; Hildebrandt, P.; Knorr, A.; Richter, M. "Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach" (2010) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 81(4)
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The electron transfer kinetics of redox proteins adsorbed on metal electrodes coated with self-assembled monolayers (SAMs) of mercaptanes shows an unusual distance-dependence. For thick SAMs, the experimentally measured electron transfer rate constant kexp obeys the behavior predicted by Marcus theory, whereas for thin SAMs, kexp remains virtually constant. In this work, we present a simple theoretical model system for the redox protein cytochrome c electrostatically bound to a SAM-coated electrode. A statistical average of the electron tunneling rate is calculated by accounting for all possible orientations of the model protein. This approach, which takes into account the electric field dependent orientational distribution, allows for a satisfactory description of the "saturation" regime in the high electric field limit. It further predicts a nonexponential behavior of the average electron transfer processes that may be experimentally checked by extending kinetic experiments to shorter sampling times, i.e., 1/ kexp. For a comprehensive description of the overall kinetics in the saturation regime at sampling times of the order of 1/ kexp, it is essential to consider the dynamics of protein reorientation, which is not implemented in the present model. © 2010 The American Physical Society.

Registro:

Documento: Artículo
Título:Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach
Autor:Georg, S.; Kabuss, J.; Weidinger, I.M.; Murgida, D.H.; Hildebrandt, P.; Knorr, A.; Richter, M.
Filiación:Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
Max-Volmer-Laboratorium für Biophysikalische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17, 10623 Berlin, Germany
Departamento de Química Inorgánica, Analítica y Química Física /INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
Palabras clave:Coated electrodes; Electron transfer kinetics; Electron transfer process; Electron transfer rates; Electron-transfer rate constants; High electric fields; Kinetic experiment; Marcus theory; Metal electrodes; Model proteins; Non-exponential behavior; Orientational distributions; Redox proteins; Sams; Saturation regime; Statistical average; Statistical physics; Theoretical models; Coated wire electrodes; Electric fields; Electrodes; Electron transitions; Electron tunneling; Rate constants; Self assembled monolayers; Proteins
Año:2010
Volumen:81
Número:4
DOI: http://dx.doi.org/10.1103/PhysRevE.81.046101
Título revista:Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Título revista abreviado:Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
ISSN:15393755
CODEN:PLEEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v81_n4_p_Georg

Referencias:

  • Avila, A., Gregory, B.W., Niki, K., Cotton, T.M., (2000) J. Phys. Chem. B, 104, p. 2759. , 10.1021/jp992591p
  • Murgida, D.H., Hildebrandt, P., (2001) J. Am. Chem. Soc., 123, p. 4062. , 10.1021/ja004165j
  • Chi, Q., Zhang, J., Andersen, J.E.T., Ulstrup, J., (2001) J. Phys. Chem. B, 105, p. 4669. , 10.1021/jp0105589
  • Murgida, D.H., Hildebrandt, P., (2005) Phys. Chem. Chem. Phys., 7, p. 3773. , 10.1039/b507989f
  • Wei, J., Liu, H., Khoshtariya, D.E., Yamamoto, H., Dick, A., Waldeck, D.H., (2002) Angew. Chem., Int. Ed., 41, p. 4700. , 10.1002/anie.200290021
  • Wei, J.J., Liu, H., Niki, K., Margoliash, E., Waldeck, D.H., (2004) J. Phys. Chem. B, 108, p. 16912. , 10.1021/jp048148i
  • Khoshtariya, D.E., Wei, J., Liu, H., Yue, H., Waldeck, D.H., (2003) J. Am. Chem. Soc., 125, p. 7704. , 10.1021/ja034719t
  • Feng, Z.Q., Imabayashi, S., Kakiuchi, T., Niki, K., (1995) J. Electroanal. Chem., 394, p. 149. , 10.1016/0022-0728(95)04058-V
  • Feng, Z.Q., Imabayashi, S., Kakiuchi, T., Niki, K., (1997) J. Chem. Soc., Faraday Trans., 93, p. 1367. , 10.1039/a605567b
  • Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., (2008) J. Am. Chem. Soc., 130, p. 9844. , 10.1021/ja8016895
  • Humphrey, W., Dalke, A., Schulten, K., (1996) J. Mol. Graphics, 14, p. 33. , 10.1016/0263-7855(96)00018-5
  • Zuo, P., Albrecht, T., Baker, P.D., Murgida, D.H., Hildebrandt, P., (2009) Phys. Chem. Chem. Phys., 11, p. 7430. , 10.1039/b904926f
  • Brautigan, D.L., Ferguson-Miller, S., Margoliash, E., (1978) Methods Enzymol., 53, p. 128. , 10.1016/S0076-6879(78)53021-8
  • Paggi, D.A., Martín, D.F., Kranich, A., Hildebrandt, P., Martí, M., Murgida, D.H., (2009) Electrochim. Acta, 54, p. 4963. , 10.1016/j.electacta.2009.02.050
  • Pincak, R., Pudlak, M., (2001) Phys. Rev. e, 64, p. 031906. , 10.1103/PhysRevE.64.031906
  • Murgida, D.H., Hildebrandt, P., (2001) J. Phys. Chem. B, 105, p. 1578. , 10.1021/jp003742n
  • The overpotential η is the difference between the applied electrode potential and the redox potential of the system: η= φappl - φredox; Marcus, R.A., Sutin, N., (1985) Biochim. Biophys. Acta, 811, p. 265
  • Renger, T., Marcus, R.A., (2003) J. Phys. Chem. A, 107, p. 8404. , 10.1021/jp026789c
  • Marcus, R.A., (1965) J. Chem. Phys., 43, p. 679. , 10.1063/1.1696792
  • Yue, H., Khoshtariya, D., Waldeck, D.H., Grochol, J., Hildebrandt, P., Murgida, D.H., (2006) J. Phys. Chem. B, 110, p. 19906. , 10.1021/jp0620670
  • Newton, M.D., Sutin, N., (1984) Annu. Rev. Phys. Chem., 35, p. 437. , 10.1146/annurev.pc.35.100184.002253
  • Murgida, D.H., Hildebrandt, P., (2004) Acc. Chem. Res., 37, p. 854. , 10.1021/ar0400443
  • Murgida, D.H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, p. 12814. , 10.1021/jp020762b
  • Landau, L.D., Lifshitz, E.M., (1980) Statistical Physics, , Butterworth-Heinemann, London
  • Zhou, J., Zheng, J., Jiang, S., (2004) J. Phys. Chem. B, 108, p. 17418. , 10.1021/jp038048x
  • Goldstein, H., (1980) Classical Mechanics, , Addison-Wesley Publishing, Reading, MA
  • Stahlberg, J., Appelgren, U., Jönsson, B., (1995) J. Colloid Interface Sci., 176, p. 397. , 10.1006/jcis.1995.9952
  • Brocklehurst, B., (1979) J. Phys. Chem., 83, p. 536. , 10.1021/j100467a022
  • Only for very short subatomic distances (<1Å ), the electric field changes the sign and repulsive interactions prevail (see Appendix ). This region, however, is not relevant for the analysis of the ET process; Murgida, D.H., Hildebrandt, P., (2001) Angew. Chem., Int. Ed., 40, p. 728. , 10.1002/1521-3773(20010216)40:4<728::AID-ANIE7280>3.0.CO;2-P
  • Papaconstantopoulos, D.A., (1986) Handbook of the Band Structure of Elemental Solids, , Plenum Press, New York
  • Lecomte, S., Hildebrandt, P., Soulimane, T., (1999) J. Phys. Chem. B, 103, p. 10053. , 10.1021/jp991818d
  • Valette, G., Hamelin, A., (1973) J. Electroanal. Chem. Interfacial Electrochem., 45, p. 301. , 10.1016/S0022-0728(73)80166-4
  • Feng, J.-J., Murgida, D.H., Kuhlmann, U., Utesch, T., Mroginski, M.A., Hildebrandt, P., Weidinger, I.M., (2008) J. Phys. Chem. B, 112, p. 15202. , 10.1021/jp8062383
  • Dai, Z., Ju, H., (2001) Phys. Chem. Chem. Phys., 3, p. 3769. , 10.1039/b104570a
  • Siebert, F., Hildebrandt, P., (2008) Vibrational Spectroscopy in Life Science, , Wiley-VCH, Berlin
  • Atkins, P., Friedman, R., (2005) Molecular Quantum Mechanics, , Oxford University Press, New York

Citas:

---------- APA ----------
Georg, S., Kabuss, J., Weidinger, I.M., Murgida, D.H., Hildebrandt, P., Knorr, A. & Richter, M. (2010) . Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 81(4).
http://dx.doi.org/10.1103/PhysRevE.81.046101
---------- CHICAGO ----------
Georg, S., Kabuss, J., Weidinger, I.M., Murgida, D.H., Hildebrandt, P., Knorr, A., et al. "Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 81, no. 4 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.046101
---------- MLA ----------
Georg, S., Kabuss, J., Weidinger, I.M., Murgida, D.H., Hildebrandt, P., Knorr, A., et al. "Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 81, no. 4, 2010.
http://dx.doi.org/10.1103/PhysRevE.81.046101
---------- VANCOUVER ----------
Georg, S., Kabuss, J., Weidinger, I.M., Murgida, D.H., Hildebrandt, P., Knorr, A., et al. Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2010;81(4).
http://dx.doi.org/10.1103/PhysRevE.81.046101