Artículo

Mininni, P.D.; Pouquet, A. "Finite dissipation and intermittency in magnetohydrodynamics" (2009) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 80(2)
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 15363 points and up to Taylor Reynolds number of ∼1200. The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than that of fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, reminiscent of recent solar wind observations. Finally, we discuss the spectral scaling laws that arise in this flow. © 2009 The American Physical Society.

Registro:

Documento: Artículo
Título:Finite dissipation and intermittency in magnetohydrodynamics
Autor:Mininni, P.D.; Pouquet, A.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina
NCAR, P.O. Box 3000, Boulder, CO 80307-3000, United States
Palabras clave:Analysis of data; Equipartition; Fast reconnection; Grid resolution; Initial conditions; Initial velocities; Intermittency; MHD flow; Numerical simulation; Solar environment; Structure functions; Taylor-Reynolds number; Computer simulation languages; Fluid dynamics; Magnetohydrodynamics; Reynolds number; Solar wind; Magnetic fields
Año:2009
Volumen:80
Número:2
DOI: http://dx.doi.org/10.1103/PhysRevE.80.025401
Título revista:Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Título revista abreviado:Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
ISSN:15393755
CODEN:PLEEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v80_n2_p_Mininni

Referencias:

  • Gekelman, W., Stenzel, R., (1984) J. Geophys. Res., 89, p. 2715. , 10.1029/JA089iA05p02715;
  • Yamada, M., (1997) Phys. Plasmas, 4, p. 1936. , 10.1063/1.872336
  • Monchaux, R., (2007) Phys. Rev. Lett., 98, p. 044502. , 10.1103/PhysRevLett.98.044502
  • Cattell, C., (2005) J. Geophys. Res., 110, p. 01211. , 10.1029/2004JA010519;
  • Wygant, J.R., (2005) J. Geophys. Res., 110, p. 09206. , 10.1029/2004JA010708;
  • Retinò, A., (2007) Nat. Phys., 3, p. 235. , 10.1038/nphys574
  • Alexandrova, O., (2004) J. Geophys. Res., 109, p. 05207. , 10.1029/2003JA010056;
  • Nykyri, K., (2006) Ann. Geophys., 24, p. 2619
  • Matthaeus, W.H., Goldstein, M.L., (1982) J. Geophys. Res., 87, p. 6011. , 10.1029/JA087iA08p06011
  • Burlaga, L.F., (1991) J. Geophys. Res., 96, p. 5847. , 10.1029/91JA00087
  • Tu, C., Marsch, E., (1990) J. Geophys. Res., 95, p. 4337. , 10.1029/JA095iA04p04337;
  • Zhou, Y., Matthaeus, W.H., Dmitruk, P., (2004) Rev. Mod. Phys., 76, p. 1015. , 10.1103/RevModPhys.76.1015
  • Mininni, P.D., Pouquet, A.G., Montgomery, D.C., (2006) Phys. Rev. Lett., 97, p. 244503. , (a) 10.1103/PhysRevLett.97.244503;
  • Mininni, P.D., Pouquet, A.G., Montgomery, D.C., (2007) Phys. Rev. Lett., 99, p. 254502. , (b) 10.1103/PhysRevLett.99.254502
  • Saur, J., (2002) Astron. Astrophys., 386, p. 699. , 10.1051/0004-6361:20020305
  • Politano, H., Pouquet, A., Sulem, P.L., (1989) Phys. Fluids B, 1, p. 2330. , 10.1063/1.859051;
  • Biskamp, D., Welter, H., (1989) Phys. Fluids B, 1, p. 1964. , 10.1063/1.859060;
  • Sorriso-Valvo, L., (2000) Europhys. Lett., 51, p. 520. , 10.1209/epl/i2000-00369-6
  • Kaneda, Y., (2003) Phys. Fluids, 15, p. 21. , 10.1063/1.1539855
  • Politano, H., Pouquet, A., (1998) Geophys. Res. Lett., 25, p. 273. , 10.1029/97GL03642;
  • Politano, H., Gomez, T., Pouquet, A., (2003) Phys. Rev. e, 68, p. 026315. , 10.1103/PhysRevE.68.026315
  • Benzi, R., (1993) Phys. Rev. e, 48, p. 29. , 10.1103/PhysRevE.48.R29
  • Podesta, J.J., Roberts, D.A., Goldstein, M.L., (2007) Astrophys. J., 664, p. 543. , 10.1086/519211
  • Matthaeus, W., Goldstein, M., Roberts, D., (1990) J. Geophys. Res., 95, p. 20673. , 10.1029/JA095iA12p20673
  • Grappin, R., (1982) Astron. Astrophys., 105, p. 6
  • Müller, W.C., Grappin, R., (2005) Phys. Rev. Lett., 95, p. 114502. , 10.1103/PhysRevLett.95.114502
  • Müller, W.C., ; Dmitruk, P., Gómez, D.O., Matthaeus, W.H., (2003) Phys. Plasmas, 10, p. 3584. , 10.1063/1.1602698
  • Clyne, J., (2007) New J. Phys., 9, p. 301. , 10.1088/1367-2630/9/8/301

Citas:

---------- APA ----------
Mininni, P.D. & Pouquet, A. (2009) . Finite dissipation and intermittency in magnetohydrodynamics. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 80(2).
http://dx.doi.org/10.1103/PhysRevE.80.025401
---------- CHICAGO ----------
Mininni, P.D., Pouquet, A. "Finite dissipation and intermittency in magnetohydrodynamics" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 80, no. 2 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.025401
---------- MLA ----------
Mininni, P.D., Pouquet, A. "Finite dissipation and intermittency in magnetohydrodynamics" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 80, no. 2, 2009.
http://dx.doi.org/10.1103/PhysRevE.80.025401
---------- VANCOUVER ----------
Mininni, P.D., Pouquet, A. Finite dissipation and intermittency in magnetohydrodynamics. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2009;80(2).
http://dx.doi.org/10.1103/PhysRevE.80.025401