Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Calcium release from intracellular stores plays a key role in the regulation of a variety of cellular activities. In various cell types this release occurs through inositol-triphosphate (IP3) receptors which are Ca2+ channels whose open probability is modulated by the cytosolic Ca2+ concentration itself. Thus, the combination of Ca2+ release and Ca2+ diffusion evokes a variety of Ca2+ signals depending on the number and relative location of the channels that participate of them. In fact, a hierarchy of Ca2+ signals has been observed in Xenopus laevis oocytes, ranging from very localized events (puffs and blips) to waves that propagate throughout the cell. In this cell type channels are organized in clusters. The behavior of individual channels within a cluster cannot be resolved with current optical techniques. Therefore, a combination of experiments and mathematical modeling is unavoidable to understand these signals. However, the numerical simulation of a detailed mathematical model of the problem is very hard given the large range of spatial and temporal scales that must be covered. In this paper we present an alternative model in which the cluster region is modeled using a relatively fine grid but where several approximations are made to compute the cytosolic Ca2+ concentration ([Ca2+]) distribution. The inner-cluster [Ca2+] distribution is used to determine the openings and closings of the channels of the cluster. The spatiotemporal [Ca2+] distribution outside the cluster is determined using a coarser grid in which each (active) cluster is represented by a point source whose current is proportional to the number of open channels determined before. A full reaction-diffusion system is solved on this coarser grid. © 2008 The American Physical Society.

Registro:

Documento: Artículo
Título:Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+ -release channels
Autor:Solovey, G.; Fraiman, D.; Pando, B.; Ponce Dawson, S.
Filiación:Departamento de Física, FCEN-UBA, Pabellón I, (1428) Buenos Aires, Argentina
Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
Palabras clave:Calcium; Concentration (process); Enzyme activity; Semiconductor doping; Sugars; Ca2+ releases; Calcium releases; Cell types; Cellular activities; Cluster regions; Coarser grids; Cytosolic; Fine grids; Intracellular stores; Large ranges; Localized events; Mathematical modeling; Numerical simulations; Open channels; Optical techniques; Point sources; Reaction-diffusion systems; Relative locations; Simplified models; Spatio temporals; Temporal scales; Triphosphate; Xenopus laevis oocytes; Probability distributions
Año:2008
Volumen:78
Número:4
DOI: http://dx.doi.org/10.1103/PhysRevE.78.041915
Título revista:Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Título revista abreviado:Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
ISSN:15393755
CODEN:PLEEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v78_n4_p_Solovey

Referencias:

  • Berridge, M.J., Bootman, M.D., Lipp, P., (1998) Nature (London), 395, p. 645. , 10.1038/27094
  • Swillens, S., Dupont, G., Combettes, L., Champeil, P., (1999) Proc. Natl. Acad. Sci. U.S.A., 96, p. 13750. , 10.1073/pnas.96.24.13750
  • Shuai, J., Rose, H.J., Parker, I., (2006) Biophys. J., 91, p. 4033. , 10.1529/biophysj.106.088880
  • Bruno, L., Solovey, G., Ventura, A.C., Dargan, S., Parker, I., Ponce Dawson, S., ; Yao, Y., Choi, J., Parker, I., (1995) J. Physiol. (London), 482, p. 533
  • Callamaras, N., Parker, I., (1994) Cell Calcium, 15, p. 66. , 10.1016/0143-4160(94)90105-8
  • Mak, D.O., Foskett, J.K., (1997) J. Gen. Physiol., 109, p. 571. , 10.1085/jgp.109.5.571
  • Shuai, J.W., Jung, P., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 506. , 10.1073/pnas.0236032100
  • Parker, I., Yao, Y., (1996) J. Physiol. (London), 491, p. 663
  • Bootman, M., Niggli, E., Berridge, M., Lipp, P., (1997) J. Physiol. (London), 499, p. 307
  • Sun, X.P., Callamaras, N., Marchant, J.S., Parker, I., (1998) J. Physiol. (London), 509, p. 67. , 10.1111/j.1469-7793.1998.067bo.x
  • Parker, I., Yao, Y., (1991) Proc. R. Soc. London, Ser. B, 246, p. 269. , 10.1098/rspb.1991.0154
  • Parker, I., Choi, J., Yao, Y., (1996) Cell Calcium, 20, p. 105. , 10.1016/S0143-4160(96)90100-1
  • Callamaras, N., Marchant, J.S., Sun, X.P., Parker, I., (1998) J. Physiol. (London), 509, p. 81. , 10.1111/j.1469-7793.1998.081bo.x
  • Da Fonseca, P.C., Morris, S.A., Nerou, E.P., Taylor, C.W., Morris, E.P., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 3936. , 10.1073/pnas.0536251100
  • Bezprozvanny, I., Watras, J., Ehrlich, B.E., (1991) Nature (London), 351, p. 751. , 10.1038/351751a0
  • De Young, G.W., Keizer, J., (1992) Proc. Natl. Acad. Sci. U.S.A., 89, p. 9895. , 10.1073/pnas.89.20.9895
  • Swillens, S., Champeil, P., Combettes, L., Dupont, G., (1998) Cell Calcium, 23, p. 291. , 10.1016/S0143-4160(98)90025-2
  • Fraiman, D., Dawson, S.P., (2004) Cell Calcium, 35, p. 403. , 10.1016/j.ceca.2003.10.004
  • Foskett, J.K., White, C., Cheung, K.H., Mak, D.O., (2007) Physiol. Rev., 87, p. 593. , 10.1152/physrev.00035.2006
  • Smith, G.D., Dai, L., Miura, R.M., Sherman, A., (2001) SIAM J. Appl. Math., 61, p. 1816. , 10.1137/S0036139900366924
  • Bentele, K., Falcke, M., (2007) Biophys. J., 93, p. 2597. , 10.1529/biophysj.107.104299
  • Shuai, J.W., Parker, I., (2005) Cell Calcium, 37, p. 283. , 10.1016/j.ceca.2004.10.008
  • Dawson, S.P., Keizer, J., Pearson, J.E., (1999) Proc. Natl. Acad. Sci. U.S.A., 96, p. 6060. , 10.1073/pnas.96.11.6060
  • Shuai, J.W., Jung, P., (2002) Biophys. J., 83, p. 87
  • Deremigio, H., Smith, G.D., (2005) Cell Calcium, 38, p. 73. , 10.1016/j.ceca.2005.06.007
  • Diambra, L., Guisoni, N., (2005) Cell Calcium, 37, p. 321. , 10.1016/j.ceca.2004.12.001
  • Ullah, G., Jung, P., (2006) Biophys. J., 90, p. 3485. , 10.1529/biophysj.105.073460
  • Shuai, J., Jung, P., (2003) New J. Phys., 5, p. 132. , 10.1088/1367-2630/5/1/132
  • Thul, R., Falcke, M., (2004) Biophys. J., 86, p. 2660
  • Bar, M., Falcke, M., Levine, H., Tsimring, L.S., (2000) Phys. Rev. Lett., 84, p. 5664. , 10.1103/PhysRevLett.84.5664
  • Falcke, M., Tsimring, L., Levine, H., (2000) Phys. Rev. e, 62, p. 2636. , 10.1103/PhysRevE.62.2636
  • Naraghi, M., Neher, E., (1997) J. Neurosci., 17, p. 6961
  • Smith, G.D., (1996) Biophys. J., 71, p. 3064
  • Rudiger, S., Shuai, J.W., Huisinga, W., Nagaiah, C., Warnecke, G., Parker, I., Falcke, M., (2007) Biophys. J., 93, p. 1847. , 10.1529/biophysj.106.099879
  • Rose, H.J., Dargan, S., Shuai, J., Parker, I., (2006) Biophys. J., 91, p. 4024. , 10.1529/biophysj.106.088872
  • Dargan, S.L., Schwaller, B., Parker, I., (2004) J. Physiol. (London), 556, p. 447. , 10.1113/jphysiol.2003.059204
  • Dargan, S.L., Parker, I., (2003) J. Physiol. (London), 553, p. 775. , 10.1113/jphysiol.2003.054247
  • Berridge, M.J., Dupont, G., (1994) Curr. Opin. Cell Biol., 6, p. 267. , 10.1016/0955-0674(94)90146-5
  • Berridge, M.J., (1997) J. Exp. Biol., 200, p. 315
  • Thomas, A.P., Bird, G.S., Hajnoczky, G., Robb-Gaspers, L.D., Putney, J., (1996) FASEB J., 10, p. 1505
  • Marchant, J., Callamaras, N., Parker, I., (1999) EMBO J., 18, p. 5285. , 10.1093/emboj/18.19.5285
  • Bootman, M.D., Berridge, M.J., (1996) Curr. Biol., 6, p. 855. , 10.1016/S0960-9822(02)00609-7
  • Cheng, H., Lederer, M.R., Lederer, W.J., Cannell, M.B., (1996) Am. J. Physiol., 270, p. 148
  • Skupin, A., Kettenmann, H., Winkler, U., Wartenberg, M., Sauer, H., Tovey, S.C., Taylor, C.W., Falcke, M., (2008) Biophys. J., 94, p. 2404. , 10.1529/biophysj.107.119495
  • Sneyd, J., Tsaneva-Atanasova, K., Bruce, J.I., Straub, S.V., Giovannucci, D.R., Yule, D.I., (2003) Biophys. J., 85, p. 1392
  • Falcke, M., (2003) Biophys. J., 84, p. 28
  • Falcke, M., (2003) Biophys. J., 84, p. 42
  • Izu, L.T., Means, S.A., Shadid, J.N., Chen-Izu, Y., Balke, C.W., (2006) Biophys. J., 91, p. 95. , 10.1529/biophysj.105.077214
  • Means, S., Smith, A.J., Shepherd, J., Shadid, J., Fowler, J., Wojcikiewicz, R.J., Mazel, T., Wilson, B.S., (2006) Biophys. J., 91, p. 537. , 10.1529/biophysj.105.075036

Citas:

---------- APA ----------
Solovey, G., Fraiman, D., Pando, B. & Ponce Dawson, S. (2008) . Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+ -release channels. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 78(4).
http://dx.doi.org/10.1103/PhysRevE.78.041915
---------- CHICAGO ----------
Solovey, G., Fraiman, D., Pando, B., Ponce Dawson, S. "Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+ -release channels" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 78, no. 4 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.041915
---------- MLA ----------
Solovey, G., Fraiman, D., Pando, B., Ponce Dawson, S. "Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+ -release channels" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 78, no. 4, 2008.
http://dx.doi.org/10.1103/PhysRevE.78.041915
---------- VANCOUVER ----------
Solovey, G., Fraiman, D., Pando, B., Ponce Dawson, S. Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+ -release channels. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2008;78(4).
http://dx.doi.org/10.1103/PhysRevE.78.041915