Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Transmission dips in the response of metallic compound gratings formed by several wires and slits in each period have been recently reported for normal illumination. These anomalies are generated by a particular arrangement of the magnetic field phases inside the subwavelength slits, and they are characterized by a significant enhancement of the interior field. We investigate the microwave response of such systems under non-normal illumination and show that new phase modes appear in this configuration. Contrary to the effect produced by a defect in a photonic crystal, these systems exhibit forbidden channels within a permitted band. We also found that the appearance of these resonances is not highly dependent on the slits' width and thickness, even though these parameters modify the overall transmittance. © 2006 The American Physical Society.

Registro:

Documento: Artículo
Título:Narrow gaps for transmission through metallic structured gratings with subwavelength slits
Autor:Skigin, D.C.; Depine, R.A.
Filiación:Grupo de Electromagnetismo Aplicado, Departamento de Física, Ciudad Universitaria, Pabellón I, C1428EHA Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
Palabras clave:Metallic compound gratings; Photonic crystals; Slits; Diffraction gratings; Magnetic fields; Microwaves; Opacity; Photons; Metallic compounds
Año:2006
Volumen:74
Número:4
DOI: http://dx.doi.org/10.1103/PhysRevE.74.046606
Título revista:Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Título revista abreviado:Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
ISSN:15393755
CODEN:PLEEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v74_n4_p_Skigin

Referencias:

  • Goulielmakis, E., Nersisyan, G., Papadogiannis, N., Charalambidis, D., Tsakiris, G., Witte, K., (2002) Appl. Phys. B: Lasers Opt., 74, p. 197206. , APBOEM 0946-2171
  • Jim Wang, J., Liu, F., Deng, X., Liu, X., Chen, L., Sciortino, P., Varghese, R., (2005) J. Vac. Sci. Technol. B, 23, p. 3164. , JVTBD9 0734-211X 10.1116/1.2127948
  • Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A., (1998) Nature (London), 391, p. 667. , NATUAS 0028-0836 10.1038/35570
  • Ghaemi, H.F., Thio, T., Grupp, D.E., Ebbesen, T.W., Lezec, H.J., (1998) Phys. Rev. B, 58, p. 6779. , PRBMDO 0163-1829 10.1103/PhysRevB.58.6779
  • Porto, J.A., García-Vidal, F.J., Pendry, J.B., (1999) Phys. Rev. Lett., 83, p. 2845. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.83.2845
  • García-Vidal, F.J., Martín-Moreno, L., (2002) Phys. Rev. B, 66, p. 155412. , PRBMDO. 0163-1829. 10.1103/PhysRevB.66.155412
  • Treacy, M.M.J., (2002) Phys. Rev. B, 66, p. 195105. , PRBMDO 0163-1829 10.1103/PhysRevB.66.195105
  • Xie, Y., Zakharian, A.R., Moloney, J.V., Mansuripur, M., (2005) Opt. Express, 13, p. 4485. , OPEXFF 1094-4087 10.1364/OPEX.13.004485
  • Thio, T., Pellerin, K.M., Linke, R.A., Lezec, H.J., Ebbesen, T.W., (2001) Opt. Lett., 26, p. 1972. , OPLEDP 0146-9592
  • Hibbins, A.P., Sambles, J.R., (2002) Appl. Phys. Lett., 81, p. 4661. , APPLAB 0003-6951 10.1063/1.1527704
  • Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Degiron, A., Ebbesen, T.W., (2003) Phys. Rev. Lett., 90, p. 167401. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.90.167401
  • García-Vidal, F.J., Lezec, H.J., Ebbesen, T.W., Martín-Moreno, L., (2003) Phys. Rev. Lett., 90, p. 213901. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.90.213901
  • Bravo-Abad, J., Martín-Moreno, L., García-Vidal, F.J., (2004) Phys. Rev. E, 69, p. 026601. , PLEEE8. 1063-651X. 10.1103/PhysRevE.69.026601
  • Xie, Y., Zakharian, A.R., Moloney, J.V., Mansuripur, M., (2004) Opt. Express, 12, p. 6106. , OPEXFF 1094-4087 10.1364/OPEX.12.006106
  • Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Pellerin, K.M., Thio, T., Pendry, J.B., Ebbesen, T.W., (2001) Phys. Rev. Lett., 86, p. 1114. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.86.1114
  • Krishnan, A., Thio, T., Kim, T.J., Lezec, H.J., Ebbesen, T.W., Wolff, P.A., Pendry, J.B., García-Vidal, F.J., (2001) Opt. Commun., 200, p. 1. , OPCOB8. 0030-4018. 10.1016/S0030-4018(01)01558-9
  • Barnes, W.L., Dereux, A., Ebbesen, T.W., (2003) Nature (London), 424, p. 824. , NATUAS 0028-0836 10.1038/nature01937
  • Darmanyan, S.A., Zayats, A.V., (2003) Phys. Rev. B, 67, p. 035424. , PRBMDO 0163-1829 10.1103/PhysRevB.67.035424
  • Popov, E., Neviere, M., Enoch, S., Reinisch, R., (2000) Phys. Rev. B, 62, p. 16100. , PRBMDO 0163-1829 10.1103/PhysRevB.62.16100
  • Hessel, A., Oliner, A.A., (1965) Appl. Opt., 4, p. 1275. , APOPAI 0003-6935
  • Veremey, V.V., Mittra, R., (1998) IEEE Trans. Antennas Propag., 46, p. 494. , IETPAK 0018-926X 10.1109/8.664112
  • Skigin, D.C., Veremey, V.V., Mittra, R., (1999) IEEE Trans. Antennas Propag., 47, p. 376. , IETPAK 0018-926X 10.1109/8.761078
  • Fantino, A.N., Grosz, S.I., Skigin, D.C., (2001) Phys. Rev. E, 64, p. 016605. , PLEEE8 1063-651X 10.1103/PhysRevE.64.016605
  • Grosz, S.I., Skigin, D.C., Fantino, A.N., (2002) Phys. Rev. E, 65, p. 056619. , PLEEE8 1063-651X 10.1103/PhysRevE.65.056619
  • Skigin, D.C., Fantino, A.N., Grosz, S.I., (2003) J. Opt. A, Pure Appl. Opt., 5, p. 129. , JOAOF8 1464-4258 10.1088/1464-4258/5/5/353
  • Depine, R.A., Fantino, A.N., Grosz, S.I., Skigin, D.C., Optik (Jena), , OTIKAJ 0030-4026 (to be published)
  • Skigin, D.C., Depine, R.A., (2005) Phys. Rev. Lett., 95, p. 217402. , PRLTAO 0031-9007 10.1103/PhysRevLett.95.217402
  • (2005), http://www.vjnano.org/nano/12; Skigin, D.C., Depine, R.A., (2006) Opt. Commun., 262, p. 270. , OPCOB8 0030-4018
  • Andrewartha, J.R., Fox, J.R., Wilson, I.J., (1977) Opt. Acta, 26, p. 69. , OPACAT 0030-3909
  • Lochbihler, H., Depine, R., (1993) Appl. Opt., 32, p. 3459. , APOPAI 0003-6935
  • Depine, R.A., (1990) Scattering in Volumes and Surfaces, pp. 239-253. , edited by M. Nieto-Vesperinas and J. C. Dainty (North-Holland, Amsterdam
  • Depine, R.A., (1987) Appl. Opt., 26, p. 2348. , APOPAI 0003-6935
  • Born, M., Wolf, E., (1999) Principles of Optics, , 7th edition (Cambridge University Press, Cambridge, UK
  • Moreno, E., Martín-Moreno, L., García-Vidal, F.J., (2006) J. Opt. A, Pure Appl. Opt., 8, p. 94. , JOAOF8. 1464-4258. 10.1088/1464-4258/8/4/S07
  • Joannopoulos, J.D., Meade, R.D., Winn, J.N., (1995) Photonic Crystals, , Princeton University Press, Chichester, W. Sussex, UK

Citas:

---------- APA ----------
Skigin, D.C. & Depine, R.A. (2006) . Narrow gaps for transmission through metallic structured gratings with subwavelength slits. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(4).
http://dx.doi.org/10.1103/PhysRevE.74.046606
---------- CHICAGO ----------
Skigin, D.C., Depine, R.A. "Narrow gaps for transmission through metallic structured gratings with subwavelength slits" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 74, no. 4 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.046606
---------- MLA ----------
Skigin, D.C., Depine, R.A. "Narrow gaps for transmission through metallic structured gratings with subwavelength slits" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 74, no. 4, 2006.
http://dx.doi.org/10.1103/PhysRevE.74.046606
---------- VANCOUVER ----------
Skigin, D.C., Depine, R.A. Narrow gaps for transmission through metallic structured gratings with subwavelength slits. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2006;74(4).
http://dx.doi.org/10.1103/PhysRevE.74.046606