Artículo

De Siervi, A.; De Luca, P.; Moiola, C.; Gueron, G.; Tongbai, R.; Chandramouli, G.V.R.; Haggerty, C.; Dzekunova, I.; Petersen, D.; Kawasaki, E.; Whoon, J.K.; Camphausen, K.; Longo, D.; Gardner, K. "Identification of new Rel/NFκB regulatory networks by focused genome location analysis" (2009) Cell Cycle. 8(13):2093-2100
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

NFκB is an inducible transcription factor that controls kinetically complex patterns of gene expression. Several studies reveal multiple pathways linking NFκB to the promotion and progression of various cancers. Despite extensive interest and characterization, many NFκB controlled genes still remain to be identified. We used chromatin immunoprecipitation combined with microarray technology (ChIP/chip) to investigate the dynamic interaction of NFκB with the promoter regions of 100 genes known to be expressed in mitogen-induced T-cells. Six previously unrecognized NFκB controlled genes (ATM, EP300, TGFβ, Selectin, MMP-1 and SFN) were identified. Each gene is induced in mitogen-stimulated T-cells, repressed by pharmacological NFκB blockade, reduced in cells deficient in the p50 NFκB subunit and dramatically repressed by RNAi specifically designed against cRel. A coregulatory role for Ets transcription factors in the expression of the NFκB controlled genes was predicted by comparative promoter analysis and confirmed by ChIP and by functional disruption of Ets. NFκB deficiency produces a deficit in ATM function and DNA repair indicating an active role for NFκB in maintaining DNA integrity. These results define new potential targets and transcriptional networks governed by NFκB and provide novel functional insights for the role of NFκB in genomic stability, cell cycle control, cell-matrix and cell-cell interactions during tumor progressio. ©2009 Landes Bioscience.

Registro:

Documento: Artículo
Título:Identification of new Rel/NFκB regulatory networks by focused genome location analysis
Autor:De Siervi, A.; De Luca, P.; Moiola, C.; Gueron, G.; Tongbai, R.; Chandramouli, G.V.R.; Haggerty, C.; Dzekunova, I.; Petersen, D.; Kawasaki, E.; Whoon, J.K.; Camphausen, K.; Longo, D.; Gardner, K.
Filiación:National Institutes of Health, Building 41, Bethesda, MD 20892, United States
Microarray Facility, National Cancer Institute, Bethesda, MD, United States
Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, United States
Laboratory of Immunology, National Institute on Aging, Bethesda, MD, United States
School of Sciences, Department of Biological Chemistry, University of Buenos Aires, Intendente Guiraldes 2160, Ciudad de Buenos Aires C1428EGA, Argentina
Palabras clave:ATM; ChIP/chip; Ets; NFκB; T-cells; ATM protein; DNA; E1A associated p300 protein; Ets transcription factor; immunoglobulin enhancer binding protein; interstitial collagenase; mitogenic agent; protein p50; RNA; selectin; transcription factor; transcription factor Rel; transforming growth factor beta; unclassified drug; animal cell; article; cell cycle regulation; cell interaction; chromatin immunoprecipitation; comparative study; controlled study; DNA repair; embryo; extracellular matrix; gene; gene expression; gene identification; gene location; genetic analysis; genome; genomic instability; human; human cell; introspection; microarray analysis; mouse; nonhuman; prediction; promoter region; protein analysis; protein deficiency; protein expression; protein function; protein interaction; RNA interference; SFN gene; T lymphocyte; technology; tumor growth
Año:2009
Volumen:8
Número:13
Página de inicio:2093
Página de fin:2100
DOI: http://dx.doi.org/10.4161/cc.8.13.8926
Título revista:Cell Cycle
Título revista abreviado:Cell Cycle
ISSN:15384101
CAS:DNA, 9007-49-2; interstitial collagenase, 9001-12-1; RNA, 63231-63-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15384101_v8_n13_p2093_DeSiervi

Referencias:

  • Karin, M., Lin, A., NFkappaB at the crossroads of life and death (2002) Nat Immunol, 3, pp. 221-227
  • Siebenlist, U., Brown, K., Claudio, E., Control of lymphocyte development by nuclear factor-kB (2005) Nature Reviews Immunology, 5 (6), pp. 435-445. , DOI 10.1038/nri1629
  • May, M.J., Ghosh, S., Signal transduction through NFkappaB (1998) Immunol Today, 19, pp. 80-88
  • Luo, J.-L., Kamata, H., Karin, M., IKK/NF-kappaB signaling: Balancing life and death - A new approach to cancer therapy (2005) Journal of Clinical Investigation, 115 (10), pp. 2625-2632. , DOI 10.1172/JCI26322
  • Sovak, M.A., Bellas, R.E., Kim, D.W., Zanieski, G.J., Rogers, A.E., Traish, A.M., Sonenshein, G.E., Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer (1997) Journal of Clinical Investigation, 100 (12), pp. 2952-2960
  • Pahl, H.L., Activators and target genes of Rel/NFkappaB transcription factors (1999) Oncogene, 18, pp. 6853-6866
  • Karin, M., Ben-Neriah, Y., Phosphorylation meets ubiquitination: The control of NF-kappaB activity (2000) Annual Review of Immunology, 18, pp. 621-663. , DOI 10.1146/annurev.immunol.18.1.621
  • Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., Young, R.A., Genome-wide location and function of DNA binding proteins (2000) Science, 290 (5500), pp. 2306-2309. , DOI 10.1126/science.290.5500.2306
  • Martone, R., Euskirchen, G., Bertone, P., Hartman, S., Royce, T.E., Luscombe, N.M., Rinn, J.L., Snyder, M., Distribution of NF-kappaB-binding sites across human chromosome 22 (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (21), pp. 12247-12252. , DOI 10.1073/pnas.2135255100
  • Wu, J., Smith, L.T., Plass, C., Huang, T.H.-M., ChIP-chip comes of age for genome-wide functional analysis (2006) Cancer Research, 66 (14), pp. 6899-6902. , DOI 10.1158/0008-5472.CAN-06-0276
  • Galang, C.K., Garcia-Ramirez, J.J., Solski, P.A., Westwick, J.K., Der, C.J., Neznanov, N.N., Oshima, R.G., Hauser, C.A., Oncogenic Neu/ErbB-2 increases Ets, AP-1, and NF-kappaB-dependent gene expression, and inhibiting Ets activation blocks Neu-mediated cellular transformation (1996) Journal of Biological Chemistry, 271 (14), pp. 7992-7998. , DOI 10.1074/jbc.271.14.7992
  • Smith, J.L., Freebern, W.J., Collins, I., De Siervi, A., Montano, I., Haggerty, C.M., McNutt, M.C., Gardner, K., Kinetic profiles of p300 occupancy in vivo predict common of promoter structure and coactivator recruitment (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (32), pp. 11554-11559. , DOI 10.1073/pnas.0402156101
  • Karanam, S., Moreno, C.S., CONFAC: Automated application of comparative genomic promoter analysis to DNA microarray datasets (2004) Nucleic Acids Research, 32 (WEB SERVER ISS), pp. W475-W484. , DOI 10.1093/nar/gkh353
  • McNutt, M.C., Tongbai, R., Cui, W., Collins, I., Freebern, W.J., Montano, I., Haggerty, C.M., Gardner, K., Human promoter genomic composition demonstrates non-random groupings that reflect general cellular function (2005) BMC Bioinformatics, 6, p. 259. , http://www.biomedcentral.com/1471-2105/6/259, DOI 10.1186/1471-2105-6-259
  • Stajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian, C., Fuellen, G., Birney, E., The Bioperl toolkit: Perl modules for the life sciences (2002) Genome Research, 12 (10), pp. 1611-1618. , DOI 10.1101/gr.361602
  • Butscher, W.G., Powers, C., Olive, M., Vinson, C., Gardner, K., Coordinate transactivation of the interleukin-2 CD28 response element by c-Rel and ATF-1/CREB2 (1998) Journal of Biological Chemistry, 273 (1), pp. 552-560. , DOI 10.1074/jbc.273.1.552
  • Camphausen, K., Brady, K.J., Burgan, W.E., Cerra, M.A., Russell, J.S., Bull, E.E.A., Tofilon, P.J., Flavopiridol enhances human tumor cell radiosensitivity and prolongs expression of gammaH2AX foci (2004) Molecular Cancer Therapeutics, 3 (4), pp. 409-416
  • Khoshnan, A., Tindell, C., Laux, I., Bae, D., Bennett, B., Nel, A.E., The NFkappaB cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4 + lymphocytes (2000) J Immunol, 165, pp. 1743-1754
  • Kolenko, V., Bloom, T., Rayman, P., Bukowski, R., Hsi, E., Finke, J., Inhibition of NF-kappaB activity in human T lymphocytes induces caspase- Dependent apoptosis without detectable activation of caspase-1 and -3 (1999) Journal of Immunology, 163 (2), pp. 590-598
  • Smith, E.M., Gregg, M., Hashemi, F., Schott, L., Hughes, T.K., Corticotropin Releasing Factor (CRF) activation of NFkappaB-directed transcription in leukocytes (2006) Cell Mol Neurobiol, 26, pp. 1021-1036
  • Rhodes, D.R., Kalyana-Sundaram, S., Mahavisno, V., Barrette, T.R., Ghosh, D., Chinnaiyan, A.M., Mining for regulatory programs in the cancer transcriptome (2005) Nature Genetics, 37 (6), pp. 579-583. , DOI 10.1038/ng1578
  • John, S., Reeves, R.B., Lin, J.X., Child, R., Leiden, J.M., Thompson, C.B., Regulation of cell-type-specific interleukin-2 receptor alpha-chain gene expression: Potential role of physical interactions between Elf-1, HMG-I(Y) and NFkappaB family proteins (1995) Mol Cell Biol, 15, pp. 1786-1796
  • Fukao, T., Kaneko, H., Birrell, G., Gatei, M., Tashita, H., Yoshida, T., Cross, S., Lavin, M.F., ATM is upregulated during the mitogenic response in peripheral blood mononuclear cells (1999) Blood, 94 (6), pp. 1998-2006
  • Cortez, D., Wang, Y., Qin, J., Elledge, S.J., Requirement of ATM-dependent phosphorylation of Brca1 in the DNA damage response to double-strand breaks (1999) Science, 286 (5442), pp. 1162-1166
  • Hehner, S.P., Hofmann, T.G., Droge, W., Schmitz, M.L., The antiinflammatory sesquiterpene lactone parthenolide inhibits NFkappaB by targeting the IkappaB kinase complex (1999) J Immunol, 163, pp. 5617-5623
  • Collas, P., Dahl, J.A., Chop it, ChIP it, check it: The current status of chromatin immunoprecipitation (2008) Frontiers in Bioscience, 13 (3), pp. 929-943. , DOI 10.2741/2733
  • Bunting, K., Rao, S., Hardy, K., Woltring, D., Denyer, G.S., Wang, J., Gerondalds, S., Shannon, M.F., Genome-wide analysis of gene expression in T cells to identify targets of the NF-kappaB transcription factor c-Rel (2007) Journal of Immunology, 178 (11), pp. 7097-7109
  • Gugasyan, R., Grumont, R., Grossmann, M., Nakamura, Y., Pohl, T., Nesic, D., Gerondakis, S., Rel/NF-kappaB transcription factors: Key mediators of B-cell activation (2000) Immunological Reviews, 176, pp. 134-140
  • Sanjabi, S., Hoffmann, A., Liou, H.-C., Baltimore, D., Smale, S.T., Selective requirement for c-Rel during IL-12 P40 gene induction macrophages (2000) Proceedings of the National Academy of Sciences of the United States of America, 97 (23), pp. 12705-12710. , DOI 10.1073/pnas.230436397
  • Pardo, A., Selman, M., MMP-1: The elder of the family (2005) Int J Biochem Cell Biol, 37, pp. 283-288
  • Gorelink, L., Flavell, R.A., Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells (2001) Nature Medicine, 7 (10), pp. 1118-1122. , DOI 10.1038/nm1001-1118
  • Bhatia, K., Siraj, A.K., Hussain, A., Bu, R., Gutierrez, M.I., The tumor suppressor gene 14-3-3 sigma is commonly methylated in normal and malignant lymphoid cells (2003) Cancer Epidemiology Biomarkers and Prevention, 12 (2), pp. 165-169
  • Ghahary, A., Marcoux, Y., Karimi-Busheri, F., Li, Y., Tredget, E.E., Kilani, R.T., Lam, E., Weinfeld, M., Differentiated keratinocyte-releasable stratifin (14-3-3 Sigma) stimulates MMP-1 expression in dermal fibroblasts (2005) Journal of Investigative Dermatology, 124 (1), pp. 170-177. , DOI 10.1111/j.0022-202X.2004.23521.x
  • Goodman, R.H., Smolik, S., CBP/p300 in cell growth, transformation, and development (2000) Genes and Development, 14 (13), pp. 1553-1577
  • Hasan, S., Hassa, P.O., Imhof, R., Hottiger, M.O., Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis (2001) Nature, 410 (6826), pp. 387-391. , DOI 10.1038/35066610
  • Tini, M., Benecke, A., Um, S.-J., Torchia, J., Evans, R.M., Chambon, P., Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription (2002) Molecular Cell, 9 (2), pp. 265-277. , DOI 10.1016/S1097-2765(02)00453-7
  • Li, N., Banin, S., Ouyang, H., Li, G.C., Courtois, G., Shiloh, Y., Karin, M., Rotman, G., ATM is Required for IkappaB Kinase (IKK) Activation in Response to DNA Double Strand Breaks (2001) Journal of Biological Chemistry, 276 (12), pp. 8898-8903. , DOI 10.1074/jbc.M009809200
  • Brzoska, K., Szumiel, I., Signalling loops and linear pathways: NFkappaB activation in response to genotoxic stress (2009) Mutagenesis, 24, pp. 1-8
  • Sekiguchi, J., Ferguson, D.O., Chen, H.T., Yang, E.M., Earle, J., Frank, K., Whitlow, S., Alt, F.W., Genetic interactions between ATM and the nonhomologous end-joining factors in genomic stability and development (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (6), pp. 3243-3248. , DOI 10.1073/pnas.051632098
  • Westphal, C.H., Hoyes, K.P., Canman, C.E., Huang, X., Kastan, M.B., Hendry, J.H., Leder, P., Loss of atm radiosensitizes multiple p53 null tissues (1998) Cancer Research, 58 (24), pp. 5637-5639
  • Fan, Z., Chakravarty, P., Alfieri, A., Pandita, T.K., Vikram, B., Guha, C., Adenovirus-mediated antisense ATM gene transfer sensitizes prostate cancer cells to radiation (2000) Cancer Gene Therapy, 7 (10), pp. 1307-1314
  • Guha, C., Guha, U., Tribius, S., Alfieri, A., Casper, D., Chakravarty, P., Mellado, W., Vikram, B., Antisense ATM gene therapy: A strategy to increase the radiosensitivity of human tumors (2000) Gene Therapy, 7 (10), pp. 852-858
  • Tribius, S., Pidel, A., Casper, D., ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture (2001) International Journal of Radiation Oncology Biology Physics, 50 (2), pp. 511-523. , DOI 10.1016/S0360-3016(01)01489-4, PII S0360301601014894

Citas:

---------- APA ----------
De Siervi, A., De Luca, P., Moiola, C., Gueron, G., Tongbai, R., Chandramouli, G.V.R., Haggerty, C.,..., Gardner, K. (2009) . Identification of new Rel/NFκB regulatory networks by focused genome location analysis. Cell Cycle, 8(13), 2093-2100.
http://dx.doi.org/10.4161/cc.8.13.8926
---------- CHICAGO ----------
De Siervi, A., De Luca, P., Moiola, C., Gueron, G., Tongbai, R., Chandramouli, G.V.R., et al. "Identification of new Rel/NFκB regulatory networks by focused genome location analysis" . Cell Cycle 8, no. 13 (2009) : 2093-2100.
http://dx.doi.org/10.4161/cc.8.13.8926
---------- MLA ----------
De Siervi, A., De Luca, P., Moiola, C., Gueron, G., Tongbai, R., Chandramouli, G.V.R., et al. "Identification of new Rel/NFκB regulatory networks by focused genome location analysis" . Cell Cycle, vol. 8, no. 13, 2009, pp. 2093-2100.
http://dx.doi.org/10.4161/cc.8.13.8926
---------- VANCOUVER ----------
De Siervi, A., De Luca, P., Moiola, C., Gueron, G., Tongbai, R., Chandramouli, G.V.R., et al. Identification of new Rel/NFκB regulatory networks by focused genome location analysis. Cell Cycle. 2009;8(13):2093-2100.
http://dx.doi.org/10.4161/cc.8.13.8926