Artículo

Castillo, D.S.; Campalans, A.; Belluscio, L.M.; Carcagno, A.L.; Radicell, J.P.; Cánepa, E.T.; Pregi, N. "E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells" (2015) Cell Cycle. 14(8):1300-1314
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with gH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells. © 2015 Taylor & Francis Group, LLC

Registro:

Documento: Artículo
Título:E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells
Autor:Castillo, D.S.; Campalans, A.; Belluscio, L.M.; Carcagno, A.L.; Radicell, J.P.; Cánepa, E.T.; Pregi, N.
Filiación:Laboratorio de Biología Molecular, Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Ciudad de Buenos Aires, Argentina
CEA; Institute of Cellular and Molecular Radiobiology, Fontenay aux Roses, France
UMR967 INSERM/Universités Paris Diderot et Paris Sud, Fontenay aux Roses, France
Laboratorio de Genética del Desarrollo Neural, Fundación Instituto Leloir, Ciudad de Buenos Aires, Argentina
Palabras clave:DNA damage response; DNA repair; E2F transcription factor; Genomic stability; Neuronal cells; ATM protein; ATR protein; caspase 3; cycloheximide; histone acetyltransferase GCN5; histone H2AX; messenger RNA; mitogen activated protein kinase kinase; Rad51 protein; transcription factor E2F1; transcription factor E2F2; zinostatin; cycloheximide; dactinomycin; H2AFX protein, human; histone; histone acetyltransferase PCAF; hydrogen peroxide; mitogen activated protein kinase kinase kinase; p300-CBP-associated factor; protein synthesis inhibitor; Rad51 protein; transcription factor E2F1; transcription factor E2F2; animal cell; apoptosis; Article; cell viability; cellular stress response; controlled study; DNA damage; DNA repair; gene induction; genetic transcription; genomic instability; genotoxicity; histone acetylation; human; human cell; mouse; nerve cell; nonhuman; oxidative stress; protein expression; protein protein interaction; protein synthesis; radiation injury; ultraviolet radiation; upregulation; cell survival; cytology; drug effects; genetics; HEK293 cell line; metabolism; nerve cell; radiation response; tumor cell line; Cell Line, Tumor; Cell Survival; Cycloheximide; Dactinomycin; DNA Damage; DNA Repair; E2F1 Transcription Factor; E2F2 Transcription Factor; Genomic Instability; HEK293 Cells; Histones; Humans; Hydrogen Peroxide; MAP Kinase Kinase Kinases; Neurons; p300-CBP Transcription Factors; Protein Synthesis Inhibitors; Rad51 Recombinase; Ultraviolet Rays; Up-Regulation
Año:2015
Volumen:14
Número:8
Página de inicio:1300
Página de fin:1314
DOI: http://dx.doi.org/10.4161/15384101.2014.985031
Título revista:Cell Cycle
Título revista abreviado:Cell Cycle
ISSN:15384101
CAS:caspase 3, 169592-56-7; cycloheximide, 642-81-9, 66-81-9; mitogen activated protein kinase kinase, 142805-58-1; zinostatin, 9014-02-2; dactinomycin, 1402-38-6, 1402-58-0, 50-76-0; histone, 9062-68-4; hydrogen peroxide, 7722-84-1; mitogen activated protein kinase kinase kinase, 146702-84-3; Cycloheximide; Dactinomycin; E2F1 Transcription Factor; E2F2 Transcription Factor; H2AFX protein, human; Histones; Hydrogen Peroxide; MAP Kinase Kinase Kinases; p300-CBP Transcription Factors; p300-CBP-associated factor; Protein Synthesis Inhibitors; Rad51 Recombinase
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15384101_v14_n8_p1300_Castillo

Referencias:

  • Leone, G., Nuckolls, F., Ishida, S., Adams, M., Sears, R., Jakoi, L., Miron, A., Nevins, J.R., Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins (2000) Mol Cell Biol, 20, pp. 3626-3632. , http://dx.doi.org/10.1128/MCB.20.10.3626-3632.2000, PMID:10779352
  • He, Y., Armanious, M.K., Thomas, M.J., Cress, W.D., Identification of E2F-3B, an alternative form of E2F-3 lacking a conserved N-terminal region (2000) Oncogene, 19, pp. 3422-3433. , PMID:10918599
  • Cartwright, P., Muller, H., Wagener, C., Holm, K., Helin, K., E2F-6: A novel member of the E2F family is an inhibitor of E2F-dependent transcription (1998) Oncogene, 17, pp. 611-623. , PMID:9704927
  • Gaubatz, S., Wood, J.G., Livingston, D.M., Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6 (1998) Proc Natl Acad Sci U S A, 95, pp. 9190-9195. , PMID:9689056
  • Di Stefano, L., Jensen, M.R., Helin, K., E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes (2003) EMBO J, 22, pp. 6289-6298. , http://dx.doi.org/10.1093/emboj/cdg613, PMID:14633988
  • Christensen, J., Cloos, P., Toftegaard, U., Klinkenberg, D., Bracken, A.P., Trinh, E., HeeranM, Di Stefano L, Helin K. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription (2005) Nucleic Acids Res, 33, pp. 5458-5470. , http://dx.doi.org/10.1093/nar/gki855, PMID:16179649
  • Bagchi, S., Raychaudhuri, P., Nevins, J.R., Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: A novel mechanism for E1A trans-activation (1990) Cell, 62, pp. 659-669. , http://dx.doi.org/10.1016/0092-8674(90)90112-R, PMID:2143697
  • Lavia, P., Jansen-Durr, P., E2F target genes and cell-cycle checkpoint control (1999) Bioessays, 21, pp. 221-230. , http://dx.doi.org/10.1002/(SICI)1521-1878(199903)21:3%3c221::AID-BIES6%3e3.0.CO;2-J, PMID:10333731
  • Huang, Y., Ishiko, T., Nakada, S., Utsugisawa, T., Kato, T., Yuan, Z.M., Role for E2F in DNA damage-induced entry of cells into S phase (1997) Cancer Res, 57, pp. 3640-3643. , PMID:9288762
  • Blattner, C., Sparks, A., Lane, D., Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53 (1999) Mol Cell Biol, 19, pp. 3704-3713. , PMID:10207094
  • O’Connor, D.J., Lu, X., Stress signals induce transcriptionally inactive E2F-1 independently of p53 and Rb (2000) Oncogene, 19, pp. 2369-2376. , PMID:10828878
  • Lin, W.C., Lin, F.T., Nevins, J.R., Selective induction of E2F1 in response to DNA damage, mediated by ATMdependent phosphorylation (2001) Genes Dev, 15, pp. 1833-1844. , PMID:11459832
  • Ma, Y., Freeman, S.N., Cress, W.D., E2F4 deficiency promotes drug-induced apoptosis (2004) Cancer Biol Ther, 3, pp. 1262-1269. , http://dx.doi.org/10.4161/cbt.3.12.1239, PMID:15611646
  • Martinez, L.A., Goluszko, E., Chen, H.Z., Leone, G., Post, S., Lozano, G., Chen, Z., Chauchereau, A., E2F3 is a mediator of DNA damage-induced apoptosis (2010) Mol Cell Biol, 30, pp. 524-536. , http://dx.doi.org/10.1128/MCB.00938-09, PMID:19917728
  • Zalmas, L.P., Zhao, X., Graham, A.L., Fisher, R., Reilly, C., Coutts, A.S., La Thangue, N.B., DNA-damage response control of E2F7 and E2F8 (2008) EMBO Rep, 9, pp. 252-259. , http://dx.doi.org/10.1038/sj.embor.7401158, PMID:18202719
  • Biswas, A.K., Johnson, D.G., Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage (2012) Cancer Res, 72, pp. 13-17
  • http://dx.doi.org/10.1158/0008-5472.CAN-11-2196, ; PMID:22180494; Stevens, C., Smith, L., La Thangue, N.B., Chk2 activates E2F-1 in response to DNA damage (2003) Nat Cell Biol, 5, pp. 401-409. , PMID:12717439
  • Ianari, A., Gallo, R., Palma, M., Alesse, E., Gulino, A., Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage (2004) J Biol Chem, 279, pp. 30830-30835. , http://dx.doi.org/10.1074/jbc.M402403200, PMID:15123636
  • Galbiati, L., Mendoza-Maldonado, R., Gutierrez, M.I., Giacca, M., Regulation of E2F-1 after DNA damage by p300-mediated acetylation and ubiquitination (2005) Cell Cycle, 4, pp. 930-939. , PMID:15917652
  • Ferreira, R., Magnaghi-Jaulin, L., Robin, P., Harel-Bellan, A., Trouche, D., The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase (1998) Proc Natl Acad Sci U S A, 95, pp. 10493-10498. , http://dx.doi.org/10.1073/pnas.95.18.10493, ; PMID:9724731
  • Vandel, L., Nicolas, E., Vaute, O., Ferreira, R., Ait-Si-Ali, S., Trouche, D., Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase (2001) Mol Cell Biol, 21, pp. 6484-6494. , http://dx.doi.org/10.1128/MCB.21.19.6484-6494.2001, PMID:11533237
  • Strober, B.E., Dunaief, J.L., Guha, Goff, S.P., Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins (1996) Mol Cell Biol, 16, pp. 1576-1583. , PMID:8657132
  • Martinez-Balbas, M.A., Bauer, U.M., Nielsen, S.J., Brehm, A., Kouzarides, T., Regulation of E2F1 activity by acetylation (2000) EMBO J, 19, pp. 662-671. , http://dx.doi.org/10.1093/emboj/19.4.662, PMID:10675335
  • Morris, L., Allen, K.E., La Thangue, N.B., Regulation of E2F transcription by cyclin E-Cdk2 kinase mediated through p300/CBP co-activators (2000) Nat Cell Biol, 2, pp. 232-239. , http://dx.doi.org/10.1038/35041123, PMID:10783242
  • Chen, J., Zhu, F., Weaks, R.L., Biswas, A.K., Guo, R., Li, Y., Johnson, D.G., E2F1 promotes the recruitment of DNA repair factors to sites of DNA double-strand breaks (2011) Cell Cycle, 10, pp. 1287-1294. , http://dx.doi.org/10.4161/cc.10.8.15341, PMID:21512314
  • Guo, R., Chen, J., Zhu, F., Biswas, A.K., Berton, T.R., Mitchell, D.L., Johnson, D.G., E2F1 localizes to sites of UVinduced DNA damage to enhance nucleotide excision repair (2010) J Biol Chem, 285, pp. 19308-19315. , http://dx.doi.org/10.1074/jbc.M110.121939, PMID:20413589
  • Guo, R., Chen, J., Mitchell, D.L., Johnson, D.G., GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage (2011) Nucleic Acids Res, 39, pp. 1390-1397. , http://dx.doi.org/10.1093/nar/gkq983, PMID:20972224
  • Carcagno, A.L., Ogara, M.F., Sonzogni, S.V., Marazita, M.C., Sirkin, P.F., Ceruti, J.M., Canepa, E.T., E2F1 transcription is induced by genotoxic stress through ATM/ATR activation (2009) IUBMB Life, 61, pp. 537-543. , http://dx.doi.org/10.1002/iub.197, PMID:19391166
  • Dogra, S.C., Hahn, C.N., May, B.K., Superinduction by cycloheximide of cytochrome P4502H1 and 5-aminolevulinate synthase gene transcription in chick embryo liver (1993) Arch Biochem Biophys, 300, pp. 531-534. , http://dx.doi.org/10.1006/abbi.1993.1073, PMID:7678728
  • Hiebert, S.W., Chellappan, S.P., Horowitz, J.M., Nevins, J.R., The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F (1992) Genes Dev, 6, pp. 177-185. , http://dx.doi.org/10.1101/gad.6.2.177, PMID:1531329
  • Park, K.K., Deok Ahn, J., Lee, I.K., Magae, J., Heintz, N.H., Kwak, J.Y., Lee, Y.C., Chae, Y.M., Inhibitory effects of novel E2F decoy oligodeoxynucleotides on mesangial cell proliferation by coexpression of E2F/DP (2003) Biochem Biophys Res Commun, 308, pp. 689-697. , http://dx.doi.org/10.1016/S0006-291X(03)01455-4, PMID:12927774
  • Sharma, A., Singh, K., Almasan, A., Histone H2AX phosphorylation: A marker for DNA damage (2012) Methods Mol Biol, 920, pp. 613-626. , http://dx.doi.org/10.1007/978-1-61779-998-3_40, PMID:22941631
  • Will, O., Gocke, E., Eckert, I., Schulz, I., Pflaum, M., Mahler, H.C., Epe, B., Oxidative DNA damage and mutations induced by a polar photosensitizer (1999) Ro19-8022. Mutat Res, 435, pp. 89-101. , PMID:10526220
  • Campalans, A., Kortulewski, T., Amouroux, R., Menoni, H., Vermeulen, W., Radicella, J.P., Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair (2013) Nucleic Acids Res, 41, pp. 3115-3129. , http://dx.doi.org/10.1093/nar/gkt025, PMID:23355608
  • Krejci, L., Altmannova, V., Spirek, M., Zhao, X., Homologous recombination and its regulation (2012) Nucleic Acids Res, 40, pp. 5795-5818. , http://dx.doi.org/10.1093/nar/gks270, PMID:22467216
  • Mladenov, E., Anachkova, B., Tsaneva, I., Sub-nuclear localization of Rad51 in response to DNA damage (2006) Genes Cells, 11, pp. 513-524. , http://dx.doi.org/10.1111/j.1365-2443.2006.00958.x, PMID:16629903
  • Brand, M., Moggs, J.G., Oulad-Abdelghani, M., Lejeune, F., Dilworth, F.J., Stevenin, J., Almouzni, G., Tora, L., UVdamaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation (2001) EMBO J, 20, pp. 3187-3196. , http://dx.doi.org/10.1093/emboj/20.12.3187, PMID:11406595
  • Beckmann, A.M., Wilce, P.A., Egr transcription factors in the nervous system (1997) Neurochem Int, 31, pp. 477-510. , http://dx.doi.org/10.1016/S0197-0186(96)00136-2, discussion 7-6
  • Quinones, A., Dobberstein, K.U., Rainov, N.G., The egr-1 gene is induced by DNA-damaging agents and nongenotoxic drugs in both normal and neoplastic human cells (2003) Life Sci, 72, pp. 2975-2992. , http://dx.doi.org/10.1016/S0024-3205(03)00230-3, PMID:12706485
  • Shin, S.Y., Kim, C.G., Lee, Y.H., Egr-1 regulates the transcription of the BRCA1 gene by etoposide (2013) BMB Rep, 46, pp. 92-96. , http://dx.doi.org/10.5483/BMBRep.2013.46.2.202, PMID:23433111
  • Hallahan, D.E., Dunphy, E., Virudachalam, S., Sukhatme, V.P., Kufe, D.W., Weichselbaum, R.R., C-jun and Egr-1 participate in DNA synthesis and cell survival in response to ionizing radiation exposure (1995) J Biol Chem, 270, pp. 30303-30309. , http://dx.doi.org/10.1074/jbc.270.51.30303, PMID:8530452
  • Huang, R.P., Fan, Y., Debelle, I., Ni, Z., Matheny, W., Adamson, E.D., Egr-1 inhibits apoptosis during theUV response: Correlation of cell survival with Egr-1 phosphorylation (1998) Cell Death Differ, 5, pp. 96-106. , http://dx.doi.org/10.1038/sj.cdd.4400322, PMID:10200450
  • Pediconi, N., Ianari, A., Costanzo, A., Belloni, L., Gallo, R., Cimino, L., Porcellini, A., Alesse, E., Differential regulation of E2F1 apoptotic target genes in response to DNA damage (2003) Nat Cell Biol, 5, pp. 552-558. , http://dx.doi.org/10.1038/ncb998, PMID:12766778
  • Yoshida, K., Inoue, I., Expression of MCM10 and TopBP1 is regulated by cell proliferation and UV irradiation via the E2F transcription factor (2004) Oncogene, 23, pp. 6250-6260. , http://dx.doi.org/10.1038/sj.onc.1207829, PMID:15195143
  • Kowalik, T.F., Degregori, J., Leone, G., Jakoi, L., Nevins, J.R., E2F1-specific induction of apoptosis and p53 accumulation, which is blocked by Mdm2 (1998) Cell Growth Differ, 9, pp. 113-118. , PMID:9486847
  • Vigo, E., Muller, H., Prosperini, E., Hateboer, G., Cartwright, P., Moroni, M.C., Helin, K., CDC25A phosphatase is a target of E2F and is required for efficient E2Finduced S phase (1999) Mol Cell Biol, 19, pp. 6379-6395. , ; PMID:10454584
  • Ziebold, U., Reza, T., Caron, A., Lees, J.A., E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos (2001) Genes Dev, 15, pp. 386-391. , http://dx.doi.org/10.1101/gad.858801, PMID:11230146
  • Degregori, J., E2F and cell survival: Context really is key (2005) Dev Cell, 9, pp. 442-444. , http://dx.doi.org/10.1016/j.devcel.2005.09.006, PMID:16198285
  • Wikonkal, N.M., Remenyik, E., Knezevic, D., Zhang, W., Liu, M., Zhao, H., Berton, T.R., Brash, D.E., Inactivating E2f1 reverts apoptosis resistance and cancer sensitivity in Trp53-deficient mice (2003) Nat Cell Biol, 5, pp. 655-660. , http://dx.doi.org/10.1038/ncb1001, PMID:12833065
  • Berton, T.R., Mitchell, D.L., Guo, R., Johnson, D.G., Regulation of epidermal apoptosis and DNA repair by E2F1 in response to UV B radiation (2005) Oncogene, 24, pp. 2449-2460. , http://dx.doi.org/10.1038/sj.onc.1208462, PMID:15735727
  • Liu, K., Lin, F.T., Ruppert, J.M., Lin, W.C., Regulation of E2F1 by BRCT domain-containing protein TopBP1 (2003) Mol Cell Biol, 23, pp. 3287-3304. , http://dx.doi.org/10.1128/MCB.23.9.3287-3304.2003, PMID:12697828
  • Maser, R.S., Mirzoeva, O.K., Wells, J., Olivares, H., Williams, B.R., Zinkel, R.A., Farnham, P.J., Petrini, J.H., Mre11 complex and DNA replication: Linkage to E2F and sites of DNA synthesis (2001) Mol Cell Biol, 21, pp. 6006-6016. , http://dx.doi.org/10.1128/MCB.21.17.6006-6016.2001, PMID:11486038
  • Chen, D., Yu, Z., Zhu, Z., Lopez, C.D., E2F1 regulates the base excision repair gene XRCC1 and promotes DNA repair (2008) J Biol Chem, 283, pp. 15381-15389. , http://dx.doi.org/10.1074/jbc.M710296200, PMID:18348985
  • Field, S.J., Tsai, F.Y., Kuo, F., Zubiaga, A.M., Kaelin, W.G., Jr., Livingston, D.M., Orkin, S.H., Greenberg, M.E., E2F-1 functions in mice to promote apoptosis and suppress proliferation (1996) Cell, 85, pp. 549-561. , PMID:8653790
  • Yamasaki, L., Jacks, T., Bronson, R., Goillot, E., Harlow, E., Dyson, N.J., Tumor induction and tissue atrophy in mice lacking E2F-1 (1996) Cell, 85, pp. 537-548. , PMID:8653789
  • Zhu, J.W., Field, S.J., Gore, L., Thompson, M., Yang, H., Fujiwara, Y., Cardiff, R.D., Degregori, J., E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis (2001) Mol Cell Biol, 21, pp. 8547-8564. , http://dx.doi.org/10.1128/MCB.21.24.8547-8564.2001, PMID:11713289
  • McKinnon, P.J., DNA repair deficiency and neurological disease (2009) Nat Rev Neurosci, 10, pp. 100-112. , http://dx.doi.org/10.1038/nrn2559, PMID:19145234
  • Caceres, A., Banker, G.A., Binder, L., Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture (1986) J Neurosci, 6, pp. 714-722. , PMID:3514816
  • Harris, K.F., Christensen, J.B., Radany, E.H., Imperiale, M.J., Novel mechanisms of E2F induction by BK virus large-T antigen: Requirement of both the pRb-binding and the (1998) J Domains. Mol Cell Biol, 18, pp. 1746-1756. , PMID:9488491
  • Campanero, M.R., Flemington, E.K., Regulation of E2F through ubiquitin-proteasome-dependent degradation: Stabilization by the pRB tumor suppressor protein (1997) Proc Natl Acad Sci U S A, 94, pp. 2221-2226. , http://dx.doi.org/10.1073/pnas.94.6.2221, PMID:9122175
  • Chomczynski, P., Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction (1987) Anal Biochem, 162, pp. 156-159. , http://dx.doi.org/10.1016/0003-2697(87)90021-2, PMID:2440339
  • Varone, C.L., Giono, L.E., Ochoa, A., Zakin, M.M., Canepa, E.T., Transcriptional regulation of 5-aminolevulinate synthase by phenobarbital and cAMP-dependent protein kinase (1999) Arch Biochem Biophys, 372, pp. 261-270. , http://dx.doi.org/10.1006/abbi.1999.1470, PMID:10600163
  • Ceruti, J.M., Scassa, M.E., Flo, J.M., Varone, C.L., Canepa, E.T., Induction of p19INK4d in response to ultraviolet light improves DNA repair and confers resistance to apoptosis in neuroblastoma cells (2005) Oncogene, 24, pp. 4065-4080. , http://dx.doi.org/10.1038/sj.onc.1208570, PMID:15750620
  • Ceruti, J.M., Scassa, M.E., Marazita, M.C., Carcagno, A.C., Sirkin, P.F., Canepa, E.T., Transcriptional upregulation of p19INK4d upon diverse genotoxic stress is critical for optimal DNA damage response (2009) Int J Biochem Cell Biol, 41, pp. 1344-1353. , http://dx.doi.org/10.1016/j.biocel.2008.12.005, PMID:19130897
  • Mendez, J., Stillman, B., Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: Assembly of prereplication complexes in late mitosis (2000) Mol Cell Biol, 20, pp. 8602-8612. , http://dx.doi.org/10.1128/MCB.20.22.8602-8612.2000, PMID:11046155
  • Fousteri, M., Vermeulen, W., Van Zeeland, A.A., Mullenders, L.H., Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo (2006) Mol Cell, 23, pp. 471-482. , http://dx.doi.org/10.1016/j.molcel.2006.06.029, PMID:16916636
  • Gospodinov, A., Tsaneva, I., Anachkova, B., RAD51 foci formation in response to DNA damage is modulated by TIP49 (2009) Int J Biochem Cell Biol, 41, pp. 925-933. , http://dx.doi.org/10.1016/j.biocel.2008, PMID:18834951

Citas:

---------- APA ----------
Castillo, D.S., Campalans, A., Belluscio, L.M., Carcagno, A.L., Radicell, J.P., Cánepa, E.T. & Pregi, N. (2015) . E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells. Cell Cycle, 14(8), 1300-1314.
http://dx.doi.org/10.4161/15384101.2014.985031
---------- CHICAGO ----------
Castillo, D.S., Campalans, A., Belluscio, L.M., Carcagno, A.L., Radicell, J.P., Cánepa, E.T., et al. "E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells" . Cell Cycle 14, no. 8 (2015) : 1300-1314.
http://dx.doi.org/10.4161/15384101.2014.985031
---------- MLA ----------
Castillo, D.S., Campalans, A., Belluscio, L.M., Carcagno, A.L., Radicell, J.P., Cánepa, E.T., et al. "E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells" . Cell Cycle, vol. 14, no. 8, 2015, pp. 1300-1314.
http://dx.doi.org/10.4161/15384101.2014.985031
---------- VANCOUVER ----------
Castillo, D.S., Campalans, A., Belluscio, L.M., Carcagno, A.L., Radicell, J.P., Cánepa, E.T., et al. E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells. Cell Cycle. 2015;14(8):1300-1314.
http://dx.doi.org/10.4161/15384101.2014.985031