Artículo

Millán, M.P.; Dickenstein, A. "The structure of MESSI biological systems" (2017) SIAM Journal on Applied Dynamical Systems. 17(2):1650-1682
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We introduce a general framework for biological systems, called MESSI systems, that describe Modifications of type Enzyme-Substrate or Swap with Intermediates, and we prove general results based on the network structure. Many posttranslational modification networks are MESSI systems. Examples are the motifs in [E. Feliu and C. Wiuf, J. R. Soc. Interface, 9 (2012), pp. 1224-1232], sequential distributive and processive multisite phosphorylation networks, most of the examples in [D. Angeli, P. De Leenher, and E. Sontag, Math. Biosci., 210 (2007), pp. 598-618], phosphorylation cascades, two component systems as in [V. B. Kothamachu et al., J. R. Soc. Interface, 12 (2015), 20150234], the bacterial EnvZ/OmpR network in [G. Shinar and M. Feinberg, Science, 327 (2010), pp. 1389-1391], and all linear networks. We show that, under mass-action kinetics, MESSI systems are conservative. We simplify the study of steady states of these systems by explicit elimination of intermediate complexes, and we give conditions to ensure an explicit rational parametrization of the variety of steady states (inspired by [E. Feliu and C. Wiuf, J. R. Soc. Interface, 10 (2013), 20130484, J. Math. Biol., 66 (2013), pp. 281-310; M. Thomson and J. Gunawardena, J. Theoret. Biol., 261 (2009), pp. 626-636]). We define an important subclass of MESSI systems with toric steady states [M. Pérez Millán et al., Bull. Math. Biol., 74 (2012), pp. 1027-1065], and we give for MESSI systems with toric steady states an easy algorithm to determine the capacity for multistationarity. In this case, the algorithm provides rate constants for which multistationarity takes place, based on the theory of oriented matroids. © 2018 Society for Industrial and Applied Mathematics.

Registro:

Documento: Artículo
Título:The structure of MESSI biological systems
Autor:Millán, M.P.; Dickenstein, A.
Filiación:FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I, Buenos Aires, C1428EGA, Argentina
IMAS (UBA-CONICET), Ciudad Universitaria, Pab. I, Buenos Aires, C1428EGA, Argentina
Palabras clave:Biological networks; MESSI system; Multistationarity; Steady states; Biological systems; Phosphorylation; Rate constants; Biological networks; Intermediate complex; MESSI system; Multistationarity; Post-translational modifications; Rational parametrizations; Steady state; Two component systems; Linear networks
Año:2017
Volumen:17
Número:2
Página de inicio:1650
Página de fin:1682
DOI: http://dx.doi.org/10.1137/17M1113722
Título revista:SIAM Journal on Applied Dynamical Systems
Título revista abreviado:SIAM J. Appl. Dyn. Syst.
ISSN:15360040
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15360040_v17_n2_p1650_Millan

Referencias:

  • Angeli, D., De Leenher, P., Sontag, E., A Petri net approach to the study of persistence in chemical reaction networks (2007) Math. Biosci., 210, pp. 598-618
  • Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G., (1999) Oriented Matroids, 46. , 2nd ed., Encyclopedia Math. Appl. Cambridge University Press, Cambridge, UK
  • Catozzi, S., Di-Bella, J.P., Ventura, A., Sepulchre, J.-A., Signaling cascades transmit information downstream and upstream but unlikely simultaneously (2016) BMC Syst. Biol., 16, pp. 1-20
  • Conradi, C., Flockerzi, D., Raisch, J., Multistationarity in the activation of a MAPK: Parametrizing the relevant region in parameter space (2008) Math. Biosci., 211, pp. 105-131
  • Conradi, C., Shiu, A., A global convergence result for processive multisite phosphorylation systems (2015) Bull. Math. Biol., 77, pp. 126-155
  • Davis, R.J., Signal transduction by the JNK group of MAP kinases (2000) Cell, 103, pp. 239-252
  • Deshaies, R.J., Ferrell, J.E., Multisite phosphorylation and the countdown to S phase (2001) Cell, 107, pp. 819-822
  • Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R., (2015) GNU Octave Version 4.0.0 Manual: A High-Level Interactive Language for Numerical Computations, , http://www.gnu.org/software/octave/doc/interpreter/
  • Feinberg, M., (1979) Lectures on Chemical Reaction Networks, , https://crnt.osu.edu/LecturesOnReactionNetworks, University of Wisconsin
  • Feinberg, M., Multiple steady states for chemical reaction networks of deficiency one (1995) Arch. Ration. Mech. Anal., 132, pp. 371-406
  • Feinberg, M., Chemical Reaction Network Toolbox, , https://crnt.osu.edu/CRNTWin
  • Feinberg, M., Horn, F., Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces (1977) Arch. Ration. Mech. Anal., 66, pp. 83-97
  • Feliu, E., Wiuf, C., Enzyme-sharing as a cause of multi-stationarity in signalling systems (2012) J. R. Soc. Interface, 9, pp. 1224-1232
  • Feliu, E., Wiuf, C., Simplifying biochemical models with intermediate species (2013) J. R. Soc. Interface, 10, p. 20130484
  • Feliu, E., Wiuf, C., Variable elimination in post-translational modification reaction networks with mass-action kinetics (2013) J. Math. Biol., 66, pp. 281-310
  • Gnacadja, G., Reachability, persistence, and constructive chemical reaction networks (part II): A formalism for species composition in chemical reaction network theory and application to persistence (2011) J. Math. Chem., 49, pp. 2137-2157
  • Gnacadja, G., Reachability, persistence, and constructive chemical reaction networks (part III): A mathematical formalism for binary enzymatic networks and application to persistence (2011) J. Math. Chem., 49, pp. 2158-2176
  • Hermann-Kleiter, N., Baier, G., NFAT pulls the strings during CD4+ T helper cell effector functions (2010) Blood, 115, pp. 2989-2997
  • Hogan, P.G., Chen, L., Nardone, J., Rao, A., Transcriptional regulation by calcium, calcineurin, and NFAT (2003) Genes Dev, 17, pp. 2205-2232
  • Hornberg, J.J., Binder, B., Bruggeman, F.J., Schoeber, B., Heinrich, R., Westerhoff, H.V., Control of MAPK signalling: From complexity to what really matters (2005) Oncogene, 24, pp. 5533-5542
  • Hsing, W., Silhavy, T.J., Function of conserved histidine-243 in phosphatase activity of EnvZ, the sensor for porin osmoregulation in Escherichia coli (1997) J. Bacteriol., 179, pp. 3729-3735
  • Huang, C.-Y.F., Ferrell, J.E., Ultrasensitivity in the mitogen-activated protein kinase cascade (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 10078-10083
  • Igo, M.M., Ninfa, A.J., Stock, J.B., Silhavy, T.J., Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor (1989) Genes Dev, 3, pp. 1725-1734
  • Kholodenko, B.N., Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades (2000) Eur. J. Biochem., 267, pp. 1583-1588
  • Kothamachu, V.B., Feliu, E., Cardelli, L., Soyer, O.S., Unlimited multistability and Boolean logic in microbial signalling (2015) J. R. Soc. Interface, 12, p. 20150234
  • Kyriakis, J.M., Avruch, J., Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation (2001) Physiol. Rev., 81, pp. 807-869
  • Macian, F., NFAT proteins: Key regulators of T-cell development and function (2005) Nat. Rev. Immunol., 5, pp. 472-484
  • Marcondes De Freitas, M., Feliu, E., Wiuf, C., Intermediates, catalysts, persistence, and boundary steady states (2017) J. Math. Biol., 74, pp. 887-932
  • Markevich, N.I., Hoek, J.B., Kholodenko, B.N., Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades (2004) J. Cell Biol., 164, pp. 353-359
  • Mirzaev, I., Gunawardena, J., Laplacian dynamics on general graphs (2013) Bull. Math. Biol., 75, pp. 2118-2149
  • Müller, S., Regensburger, G., Elementary vectors and conformal sums in polyhedral geometry and their relevance for metabolic pathway analysis (2016) Front Genet, 7, p. 90
  • Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A., Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry (2016) Found. Comput. Math., 16, pp. 69-97
  • Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K., Cobb, M.H., Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions (2001) Endocr. Rev., 22, pp. 153-183
  • Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C., Chemical reaction systems with toric steady states (2012) Bull. Math. Biol., 74, pp. 1027-1065
  • Pratt, L., Silhavy, T.J., Porin regulation of Escherichia coli (1995) Two-Component Signal Transduction, pp. 105-127. , J. A. Hoch and T. J. Silhavy, eds., American Society for Microbiology, Washington, DC
  • Richter-Gebert, J., Ziegler, G.M., Oriented matroids (1997) Handbook of Discrete and Computational Geometry, pp. 111-132. , J. E. Goodman and J. O'Rourke, eds., Chapman and Hall/CRC, Boca Raton, FL
  • Rockafellar, R.T., The elementary vectors of a subspace of RN (1967) Combinatorial Mathematics and Its Applications Proc. Conf., pp. 104-127. , Univ. North Carolina, Chapel Hill, NC, University of North Carolina Press, Chapel Hill, NC, 1969
  • Sáez, M., Wiuf, C., Feliu, E., Graphical reduction of reaction networks by linear elimination of species (2017) J. Math. Biol., 74, pp. 195-237
  • Schaeffer, H.J., Weber, M.J., Mitogen-activated protein kinases: Specific messages from ubiquitous messengers (1999) Mol. Cell Biol., 19, pp. 2435-2444
  • Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Muller, G., Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors (2002) Nat. Biotechnol., 20, pp. 370-375
  • Shaul, Y.D., Seger, R., The MEK/ERK cascade: From signaling specificity to diverse functions (2007) Biochim. Biophys. Acta., 1773, pp. 1213-1226
  • Shinar, G., Feinberg, M., Structural sources of robustness in biochemical reaction networks (2010) Science, 327, pp. 1389-1391
  • Stock, A.M., Robinson, V.L., Goudreau, P.N., Two-component signal transduction (2000) Annu. Rev. Biochem., 69, pp. 183-215
  • Sturmfels, B., (1995) Gröbner Bases and Convex Polytopes, , University Lecture Ser. 8, AMS, Providence, RI
  • Thomson, M., Gunawardena, J., The rational parametrisation theorem for multisite posttranslational modification systems (2009) J. Theoret. Biol., 261, pp. 626-636
  • Turjanski, A., Vaqué, J., Gutkind, J., MAP kinases and the control of nuclear events (2007) Oncogene, 26, pp. 3240-3253
  • Tutte, W.T., The dissection of equilateral triangles into equilateral triangles (1948) Proc. Cambridge Philos. Soc., 44, pp. 463-482
  • Vol'pert, A., Hudjaev, S., Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics (1985) Mech. Anal., 8. , Springer, Amsterdam
  • Wang, L., Sontag, E., On the number of steady states in a multiple futile cycle (2008) J. Math. Biol., 57, pp. 29-52
  • Widmann, C., Gibson, S., Jarpe, M.B., Johnson, G.L., Mitogen-activated protein kinase conservation of a three-kinase module from yeast to human (1999) Physiol. Rev., 79, pp. 143-180
  • Zarubin, T., Han, J., Activation and signaling of the p38 MAP kinase pathway (2005) Cell Res, 15, pp. 11-18
  • Zhu, Y., Qin, L., Yoshida, T., Inouye, M., Phosphatase activity of histidine kinase EnvZ without kinase catalytic domain (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 7808-7813

Citas:

---------- APA ----------
Millán, M.P. & Dickenstein, A. (2017) . The structure of MESSI biological systems. SIAM Journal on Applied Dynamical Systems, 17(2), 1650-1682.
http://dx.doi.org/10.1137/17M1113722
---------- CHICAGO ----------
Millán, M.P., Dickenstein, A. "The structure of MESSI biological systems" . SIAM Journal on Applied Dynamical Systems 17, no. 2 (2017) : 1650-1682.
http://dx.doi.org/10.1137/17M1113722
---------- MLA ----------
Millán, M.P., Dickenstein, A. "The structure of MESSI biological systems" . SIAM Journal on Applied Dynamical Systems, vol. 17, no. 2, 2017, pp. 1650-1682.
http://dx.doi.org/10.1137/17M1113722
---------- VANCOUVER ----------
Millán, M.P., Dickenstein, A. The structure of MESSI biological systems. SIAM J. Appl. Dyn. Syst. 2017;17(2):1650-1682.
http://dx.doi.org/10.1137/17M1113722