Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Saccharomyces cerevisiae UGA4 gene encodes a permease capable of importing γ-aminobutyric acid (GABA) and δ-aminolevulinic acid (ALA) into the cell. GABA-dependent induction of this permease requires at least two positive-acting proteins, the specific factor Uga3 and the pleiotropic factor Uga35/Dal81. UGA4 is subjected to a very complex regulation, and its induction is affected by the presence of extracellular amino acids; this effect is mediated by the plasma membrane amino acid sensor SPS. Our results show that leucine affects UGA4 induction and that the SPS sensor and the downstream effectors Stp1 and Stp2 participate in this regulation. Moreover, we found that the Uga3 and Uga35/Dal81 transcription factors bind to the UGA4 promoter in a GABA-dependent manner and that this binding is impaired by the presence of leucine. We also found that the Leu3 transcription factor negatively regulates UGA4 transcription, although this seems to be through an indirect mechanism. © 2010, American Society for Microbiology.

Registro:

Documento: Artículo
Título:Uga3 and Uga35/Dal81 transcription factors regulate UGA4 transcription in response to γ-Aminobutyric acid and Leucine
Autor:Cardillo, S.B.; Moretti, M.B.; García, S.C.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina
Palabras clave:4 aminobutyric acid; 4 aminobutyric acid carrier; DAL81 protein, S cerevisiae; DNA binding protein; leucine; Saccharomyces cerevisiae protein; transcription factor; UGA3 protein, S cerevisiae; UGA4 protein, S cerevisiae; 4 aminobutyric acid; 4 aminobutyric acid carrier; DNA binding protein; leucine; protein binding; Saccharomyces cerevisiae protein; transcription factor; article; biological model; drug effect; fungal gene; gene expression regulation; genetic transcription; genetics; metabolism; mutation; promoter region; protein binding; Saccharomyces cerevisiae; drug effects; genetic transcription; genetics; metabolism; Saccharomyces cerevisiae; DNA-Binding Proteins; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; Gene Expression Regulation, Fungal; Genes, Fungal; Leucine; Models, Genetic; Mutation; Promoter Regions, Genetic; Protein Binding; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Transcription Factors; Transcription, Genetic; Saccharomyces cerevisiae; DNA-Binding Proteins; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; Gene Expression Regulation, Fungal; Genes, Fungal; Leucine; Models, Genetic; Mutation; Promoter Regions, Genetic; Protein Binding; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Transcription Factors; Transcription, Genetic
Año:2010
Volumen:9
Número:8
Página de inicio:1262
Página de fin:1271
DOI: http://dx.doi.org/10.1128/EC.00117-10
Título revista:Eukaryotic Cell
Título revista abreviado:Eukaryotic Cell
ISSN:15359778
CODEN:ECUEA
CAS:4 aminobutyric acid, 28805-76-7, 56-12-2; leucine, 61-90-5, 7005-03-0; DAL81 protein, S cerevisiae; DNA-Binding Proteins; GABA Plasma Membrane Transport Proteins; Leucine, 61-90-5; Saccharomyces cerevisiae Proteins; Transcription Factors; UGA3 protein, S cerevisiae; UGA4 protein, S cerevisiae; gamma-Aminobutyric Acid, 56-12-2; DAL81 protein, S cerevisiae; DNA-Binding Proteins; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; Leucine; Saccharomyces cerevisiae Proteins; Transcription Factors; UGA3 protein, S cerevisiae; UGA4 protein, S cerevisiae
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_15359778_v9_n8_p1262_Cardillo.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15359778_v9_n8_p1262_Cardillo

Referencias:

  • Abdel-Sater, F., Iraqui, I., Urrestarazu, A., Andre, B., The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae (2004) Genetics, 166, pp. 1727-1739
  • Andre, B., Hein, C., Grenson, M., Jauniaux, J.C., Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae (1993) Mol. Gen. Genet., 237, pp. 17-25
  • Andre, B., Talibi, D., Soussi Boudekou, S., Hein, C., Vissers, S., Coornaert, D., Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae (1995) Nucleic Acids Res., 23, pp. 558-564
  • Andreasson, C., Heessen, S., Ljungdahl, P.O., Regulation of transcription factor latency by receptor-activated proteolysis (2006) Genes Dev., 20, pp. 1563-1568
  • Bermudez Moretti, M., Correa Garcia, S., Ramos, E., Batlle, A., Delta-Aminolevulinic acid uptake is mediated by the gamma-aminobutyric acid-specific permease UGA4 (1996) Cell. Mol. Biol., 42, pp. 519-523. , (Noisy-le-grand)
  • Bermudez Moretti, M., Perullini, A.M., Batlle, A., Correa Garcia, S., Expression of the UGA4 gene encoding the delta-aminolevulinic and gamma-aminobutyric acids permease in Saccharomyces cerevisiae is controlled by amino acid-sensing systems (2005) Arch. Microbiol., 184, pp. 137-140
  • Bernard, F., Andre, B., Ubiquitin and the SCF(Grr1) ubiquitin ligase complex are involved in the signalling pathway activated by external amino acids in Saccharomyces cerevisiae (2001) FEBS Lett., 496, pp. 81-85
  • Boban, M., Ljungdahl, P.O., Dal81 enhances Stp1- and Stp2- dependent transcription necessitating negative modulation by inner nuclear membrane protein Asi1 in Saccharomyces cerevisiae (2007) Genetics, 176, pp. 2087-2097
  • Boer, V.M., Daran, J.M., Almering, M.J., de Winde, J.H., Pronk, J.T., Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures (2005) FEMS Yeast Res., 5, pp. 885-897
  • Bricmont, P.A., Daugherty, J.R., Cooper, T.G., The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae (1991) Mol. Cell. Biol., 11, pp. 1161-1166
  • Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H., Hieter, P., Multifunctional yeast high-copy-number shuttle vectors (1992) Gene, 110, pp. 119-122
  • Cunningham, T.S., Dorrington, R.A., Cooper, T.G., The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae (1994) J. Bacteriol., 176, pp. 4718-4725
  • Davis, M.A., Small, A.J., Kourambas, S., Hynes, M.J., The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function (1996) J. Bacteriol., 178, pp. 3406-3409
  • de Boer, M., Nielsen, P.S., Bebelman, J.P., Heerikhuizen, H., Andersen, H.A., Planta, R.J., Stp1p, Stp2p and Abf1p are involved in regulation of expression of the amino acid transporter gene BAP3 of Saccharomyces cerevisiae (2000) Nucleic Acids Res., 28, pp. 974-981
  • Didion, T., Grausland, M., Kielland-Brandt, C., Andersen, H.A., Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae (1996) J. Bacteriol., 178, pp. 2025-2029
  • Eckert-Boulet, N., Nielsen, P.S., Friis, C., dos Santos, M.M., Nielsen, J., Kielland-Brandt, M.C., Regenberg, B., Transcriptional profiling of extracellular amino acid sensing in Saccharomyces cerevisiae and the role of Stp1p and Stp2p (2004) Yeast, 21, pp. 635-648
  • Forsberg, H., Gilstring, C.F., Zargari, A., Martinez, P., Ljungdahl, P.O., The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids (2001) Mol. Microbiol., 42, pp. 215-228
  • Forsberg, H., Ljungdahl, P.O., Genetic and biochemical analysis of the yeast plasma membrane Ssy1p-Ptr3p-Ssy5p sensor of extracellular amino acids (2001) Mol. Cell. Biol., 21, pp. 814-826
  • Gaber, R.F., Ottow, K., Andersen, H.A., Kielland-Brandt, M.C., Constitutive and hyperresponsive signaling by mutant forms of Saccharomyces cerevisiae amino acid sensor Ssy1 (2003) Eukaryot. Cell, 2, pp. 922-929
  • Gauss, R., Trautwein, M., Sommer, T., Spang, A., New modules for the repeated internal and N-terminal epitope tagging of genes in Saccharomyces cerevisiae (2005) Yeast, 22, pp. 1-12
  • Gietz, R.D., Woods, R.A., Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method (2002) Methods Enzymol., 350, pp. 87-96
  • Goldstein, A.L., McCusker, J.H., Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae (1999) Yeast, 15, pp. 1541-1553
  • Guldener, U., Heck, S., Fielder, T., Beinhauer, J., Hegemann, J.H., A new efficient gene disruption cassette for repeated use in budding yeast (1996) Nucleic Acids Res., 24, pp. 2519-2524
  • Hu, Y., Cooper, T.G., Kohlhaw, G.B., The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation (1995) Mol. Cell. Biol., 15, pp. 52-57
  • Idicula, A.M., Blatch, G.L., Cooper, T.G., Dorrington, R.A., Binding and activation by the zinc cluster transcription factors of Saccharomyces cerevisiae. Redefining the UASGABA and its interaction with Uga3p (2002) J. Biol. Chem., 277, pp. 45977-45983
  • Iraqui, I., Vissers, S., Bernard, F., de Craene, J.O., Boles, E., Urrestarazu, A., Andre, B., Amino acid signaling in Saccharomyces cerevisiae: A permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease (1999) Mol. Cell. Biol., 19, pp. 989-1001
  • Jacobs, P., Jauniaux, J.C., Grenson, M., A cis-dominant regulatory mutation linked to the argB-argC gene cluster in Saccharomyces cerevisiae (1980) J. Mol. Biol., 139, pp. 691-704
  • Kodama, Y., Omura, F., Takahashi, K., Shirahige, K., Ashikari, T., Genome-wide expression analysis of genes affected by amino acid sensor Ssy1p in Saccharomyces cerevisiae (2002) Curr. Genet., 41, pp. 63-72
  • Kohlhaw, G.B., Leucine biosynthesis in fungi: Entering metabolism through the back door (2003) Microbiol. Mol. Biol. Rev., 67, pp. 1-15
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408
  • Ljungdahl, P.O., Amino-acid-induced signalling via the SPS-sensing pathway in yeast (2009) Biochem. Soc. Trans., 37, pp. 242-247
  • Longtine, M.S., McKenzie III, A., Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., Pringle, J.R., Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae (1998) Yeast, 14, pp. 953-961
  • Luzzani, C., Cardillo, S.B., Bermudez Moretti, M., Correa Garcia, S., New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: Two parallel pathways participate in carbon-regulated transcription (2007) Microbiology, 153, pp. 3677-3684
  • MacPherson, S., Larochelle, M., Turcotte, B., A fungal family of transcriptional regulators: The zinc cluster proteins (2006) Microbiol. Mol. Biol. Rev., 70, pp. 583-604
  • Marzluf, G.A., Genetic regulation of nitrogen metabolism in the fungi (1997) Microbiol. Mol. Biol. Rev., 61, pp. 17-32
  • Miller, J.H., (1972) Experiments in Molecular Genetics, pp. 23-56. , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  • Myers, A.M., Tzagoloff, A., Kinney, D.M., Lusty, C.J., Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions (1986) Gene, 45, pp. 299-310
  • Nielsen, P.S., van den Hazel, B., Didion, T., de Boer, M., Jorgensen, M., Planta, R.J., Kielland-Brandt, M.C., Andersen, H.A., Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2 (2001) Mol. Gen. Genet., 264, pp. 613-622
  • Noel, J., Turcotte, B., Zinc cluster proteins Leu3p and Uga3p recognize highly related but distinct DNA targets (1998) J. Biol. Chem., 273, pp. 17463-17468
  • Strachan, T., Read, A.P., PCR, DNA sequencing and in vitro mutagenesis (1999) Human Molecular Genetics, , 2nd ed. Garland Science, London, United Kingdom
  • Talibi, D., Grenson, M., Andre, B., Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae (1995) Nucleic Acids Res., 23, pp. 550-557
  • Tang, L., Liu, X., Clarke, N.D., Inferring direct regulatory targets from expression and genome location analyses: A comparison of transcription factor deletion and overexpression (2006) BMC Genomics, 7, p. 215
  • Teixeira, M.C., Monteiro, P., Jain, P., Tenreiro, S., Fernandes, A.R., Mira, N.P., Alenquer, M., Sa-Correia, I., The YEASTRACT database: A tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae (2006) Nucleic Acids Res., 34, pp. D446-D451
  • Vissers, S., Andre, B., Muyldermans, F., Grenson, M., Induction of the 4-aminobutyrate and urea-catabolic pathways in Saccharomyces cerevisiae. Specific and common transcriptional regulators (1990) Eur. J. Biochem., 187, pp. 611-616
  • Voth, W.P., Jiang, Y.W., Stillman, D.J., New 'marker swap' plasmids for converting selectable markers on budding yeast gene disruptions and plasmids (2003) Yeast, 20, pp. 985-993
  • Wach, A., PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae (1996) Yeast, 12, pp. 259-265
  • Wach, A., Brachat, A., Pohlmann, R., Philippsen, P., New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae (1994) Yeast, 10, pp. 1793-1808
  • Wielemans, K., Jean, C., Vissers, S., Andre, B., Amino acid signaling in yeast: Post-genome duplication divergence of the Stp1 and Stp2 transcription factors (2010) J. Biol. Chem., 285, pp. 855-865

Citas:

---------- APA ----------
Cardillo, S.B., Moretti, M.B. & García, S.C. (2010) . Uga3 and Uga35/Dal81 transcription factors regulate UGA4 transcription in response to γ-Aminobutyric acid and Leucine. Eukaryotic Cell, 9(8), 1262-1271.
http://dx.doi.org/10.1128/EC.00117-10
---------- CHICAGO ----------
Cardillo, S.B., Moretti, M.B., García, S.C. "Uga3 and Uga35/Dal81 transcription factors regulate UGA4 transcription in response to γ-Aminobutyric acid and Leucine" . Eukaryotic Cell 9, no. 8 (2010) : 1262-1271.
http://dx.doi.org/10.1128/EC.00117-10
---------- MLA ----------
Cardillo, S.B., Moretti, M.B., García, S.C. "Uga3 and Uga35/Dal81 transcription factors regulate UGA4 transcription in response to γ-Aminobutyric acid and Leucine" . Eukaryotic Cell, vol. 9, no. 8, 2010, pp. 1262-1271.
http://dx.doi.org/10.1128/EC.00117-10
---------- VANCOUVER ----------
Cardillo, S.B., Moretti, M.B., García, S.C. Uga3 and Uga35/Dal81 transcription factors regulate UGA4 transcription in response to γ-Aminobutyric acid and Leucine. Eukaryotic Cell. 2010;9(8):1262-1271.
http://dx.doi.org/10.1128/EC.00117-10