Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Drosophila tracheal terminal branches are plastic and have the capacity to sprout out projections toward oxygen-starved areas, in a process analogous to mammalian angiogenesis. This response involves the upregulation of FGF/Branchless in hypoxic tissues, which binds its receptor Breathless on tracheal cells. Here, we show that extra sprouting depends on the Hypoxia-Inducible Factor (HIF)-α homolog Sima and on the HIF-prolyl hydroxylase Fatiga that operates as an oxygen sensor. In mild hypoxia, Sima accumulates in tracheal cells, where it induces breathless, and this induction is sufficient to provoke tracheal extra sprouting. In nontracheal cells, Sima contributes to branchless induction, whereas overexpression of Sima fails to attract terminal branch outgrowth, suggesting that HIF-independent components are also required for full induction of the ligand. We propose that the autonomous response to hypoxia that occurs in tracheal cells enhances tracheal sensitivity to increasing Branchless levels, and that this mechanism is a cardinal step in hypoxia-dependent tracheal sprouting. © 2008 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Cell Autonomy of HIF Effects in Drosophila: Tracheal Cells Sense Hypoxia and Induce Terminal Branch Sprouting
Autor:Centanin, L.; Dekanty, A.; Romero, N.; Irisarri, M.; Gorr, T.A.; Wappner, P.
Filiación:Instituto Leloir, FBMC, FCEyN-Universidad de Buenos Aires, Patricias Argentinas 435, Buenos Aires, 1405, Argentina
Institute of Veterinary Physiology, Vetsuisse Faculty, Zurich Center for Integrative Human Physiology (ZIHP), Wintherthurerstrasse 260, CH-8057 Zurich, Switzerland
Palabras clave:DEVBIO; cell protein; fibroblast growth factor receptor; hypoxia inducible factor alpha; ligand; procollagen proline 2 oxoglutarate 4 dioxygenase; protein Fatiga; transcription factor; transcription factor Branchless; transcription factor Breathless; transcription factor Sima; unclassified drug; angiogenesis; animal cell; article; cell hypoxia; controlled study; Drosophila; embryo; gene overexpression; nonhuman; organogenesis; oxygen sensing; phenotype; priority journal; protein expression; protein localization; tissue oxygenation; trachea; wild type; Animals; Anoxia; Body Patterning; DNA-Binding Proteins; Drosophila melanogaster; Drosophila Proteins; Fibroblast Growth Factors; Gene Expression Regulation, Developmental; Hypoxia-Inducible Factor 1, alpha Subunit; Larva; Oxygen; Phenotype; Procollagen-Proline Dioxygenase; Protein-Tyrosine Kinases; Receptors, Fibroblast Growth Factor; Mammalia
Año:2008
Volumen:14
Número:4
Página de inicio:547
Página de fin:558
DOI: http://dx.doi.org/10.1016/j.devcel.2008.01.020
Título revista:Developmental Cell
Título revista abreviado:Dev. Cell
ISSN:15345807
CODEN:DCEEB
CAS:fibroblast growth factor receptor, 153424-51-2; procollagen proline 2 oxoglutarate 4 dioxygenase, 9028-06-2; DNA-Binding Proteins; Drosophila Proteins; Fibroblast Growth Factors, 62031-54-3; Hif prolyl hydroxylase, Drosophila, 1.14.11.2; Hypoxia-Inducible Factor 1, alpha Subunit; Oxygen, 7782-44-7; Procollagen-Proline Dioxygenase, 1.14.11.2; Protein-Tyrosine Kinases, 2.7.1.112; Receptors, Fibroblast Growth Factor; Sima protein, Drosophila; branchless protein, Drosophila; breathless protein, Drosophila, 2.7.1.112
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_15345807_v14_n4_p547_Centanin.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15345807_v14_n4_p547_Centanin

Referencias:

  • Affolter, M., Bellusci, S., Itoh, N., Shilo, B., Thiery, J.P., Werb, Z., Tube or not tube: remodeling epithelial tissues by branching morphogenesis (2003) Dev. Cell, 4, pp. 11-18
  • Arquier, N., Vigne, P., Duplan, E., Hsu, T., Therond, P.P., Frelin, C., D'Angelo, G., Analysis of the hypoxia-sensing pathway in Drosophila melanogaster (2006) Biochem. J., 393, pp. 471-480
  • Bacon, N.C., Wappner, P., O'Rourke, J.F., Bartlett, S.M., Shilo, B., Pugh, C.W., Ratcliffe, P.J., Regulation of the Drosophila bHLH-PAS protein Sima by hypoxia: functional evidence for homology with mammalian HIF-1α (1998) Biochem. Biophys. Res. Commun., 249, pp. 811-816
  • Bruick, R.K., McKnight, S.L., A conserved family of prolyl-4-hydroxylases that modify HIF (2001) Science, 294, pp. 1337-1340
  • Burmester, T., Hankeln, T., The respiratory proteins of insects (2007) J. Insect Physiol., 53, pp. 285-294
  • Carmeliet, P., Angiogenesis in health and disease (2003) Nat. Med., 9, pp. 653-660
  • Carmeliet, P., Dor, Y., Herbert, J.M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Maxwell, P., Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis (1998) Nature, 394, pp. 485-490
  • Centanin, L., Ratcliffe, P.J., Wappner, P., Reversion of lethality and growth defects in Fatiga oxygen-sensor mutant flies by loss of Hypoxia-Inducible Factor-α/Sima (2005) EMBO Rep., 6, pp. 1070-1075
  • Dossenbach, C., Rock, S., Affolter, M., Specificity of FGF signaling in cell migration in Drosophila (2001) Development, 128, pp. 4563-4572
  • Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Dhanda, A., C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation (2001) Cell, 107, pp. 43-54
  • Ferrara, N., Gerber, H.P., LeCouter, J., The biology of VEGF and its receptors (2003) Nat. Med., 9, pp. 669-676
  • Folkman, J., Klagsbrun, M., Angiogenic factors (1987) Science, 235, pp. 442-447
  • Gerber, H.P., Condorelli, F., Park, J., Ferrara, N., Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia (1997) J. Biol. Chem., 272, pp. 23659-23667
  • Ghabrial, A.S., Krasnow, M.A., Social interactions among epithelial cells during tracheal branching morphogenesis (2006) Nature, 441, pp. 746-749
  • Ghabrial, A., Luschnig, S., Metzstein, M.M., Krasnow, M.A., Branching morphogenesis of the Drosophila tracheal system (2003) Annu. Rev. Cell Dev. Biol., 19, pp. 623-647
  • Gorr, T.A., Tomita, T., Wappner, P., Bunn, H.F., Regulation of Drosophila hypoxia-inducible factor (HIF) activity in SL2 cells: identification of a hypoxia-induced variant isoform of the HIFα homolog gene similar (2004) J. Biol. Chem., 279, pp. 36048-36058
  • Gorr, T.A., Gassmann, M., Wappner, P., Sensing and responding to hypoxia via HIF in model invertebrates (2006) J. Insect Physiol., 52, pp. 349-364
  • Guillemin, K., Groppe, J., Ducker, K., Treisman, R., Hafen, E., Affolter, M., Krasnow, M.A., The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system (1996) Development, 122, pp. 1353-1362
  • Hewitson, K.S., McNeill, L.A., Riordan, M.V., Tian, Y.M., Bullock, A.N., Welford, R.W., Elkins, J.M., Gleadle, J.M., Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family (2002) J. Biol. Chem., 277, pp. 26351-26355
  • Hochachka, P.W., Defense strategies against hypoxia and hypothermia (1986) Science, 231, pp. 234-241
  • Hochachka, P.W., Buck, L.T., Doll, C.J., Land, S.C., Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 9493-9498
  • Huang, L.E., Gu, J., Schau, M., Bunn, H.F., Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 7987-7992
  • Isaac, D.D., Andrew, D.J., Tubulogenesis in Drosophila: a requirement for the trachealess gene product (1996) Genes Dev., 10, pp. 103-117
  • Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Kaelin Jr., W.G., HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing (2001) Science, 292, pp. 464-468
  • Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Schofield, C.J., Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation (2001) Science, 292, pp. 468-472
  • Jarecki, J., Johnson, E., Krasnow, M.A., Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF (1999) Cell, 99, pp. 211-220
  • Jin, J., Anthopoulos, N., Wetsch, B., Binari, R.C., Isaac, D.D., Andrew, D.J., Woodgett, J.R., Manoukian, A.S., Regulation of Drosophila tracheal system development by protein kinase B (2001) Dev. Cell, 1, pp. 817-827
  • Kallio, P.J., Okamoto, K., O'Brien, S., Carrero, P., Makino, Y., Tanaka, H., Poellinger, L., Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1α (1998) EMBO J., 17, pp. 6573-6586
  • Klambt, C., Glazer, L., Shilo, B.Z., breathless, a Drosophila Fgf receptor homolog, is essential for migration of tracheal and specific midline glial cells (1992) Genes Dev., 6, pp. 1668-1678
  • Lavista-Llanos, S., Centanin, L., Irisarri, M., Russo, D.M., Gleadle, J.M., Bocca, S.N., Muzzopappa, M., Wappner, P., Control of the hypoxic response in Drosophila melanogaster by the basic helix-loop-helix PAS protein similar (2002) Mol. Cell. Biol., 22, pp. 6842-6853
  • Lee, T., Luo, L., Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis (1999) Neuron, 22, pp. 451-461
  • Levy, A.P., Levy, N.S., Wegner, S., Goldberg, M.A., Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia (1995) J. Biol. Chem., 270, pp. 13333-13340
  • Levy, A.P., Levy, N.S., Goldberg, M.A., Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel-Lindau protein (1996) J. Biol. Chem., 271, pp. 25492-25497
  • Levy, A.P., Levy, N.S., Goldberg, M.A., Post-transcriptional regulation of vascular endothelial growth factor by hypoxia (1996) J. Biol. Chem., 271, pp. 2746-2753
  • Luo, J.C., Shibuya, M., A variant of nuclear localization signal of bipartite-type is required for the nuclear translocation of hypoxia inducible factors (1α, 2α and 3α) (2001) Oncogene, 20, pp. 1435-1444
  • Ma, E., Haddad, G.G., Isolation and characterization of the hypoxia-inducible factor 1β in Drosophila melanogaster (1999) Brain Res. Mol. Brain Res., 73, pp. 11-16
  • McGuire, S.E., Mao, Z., Davis, R.L., Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila (2004) Sci. STKE, 2004, pp. pl6
  • Metzger, R.J., Krasnow, M.A., Genetic control of branching morphogenesis (1999) Science, 284, pp. 1635-1639
  • Nagao, M., Ebert, B.L., Ratcliffe, P.J., Pugh, C.W., Drosophila melanogaster SL2 cells contain a hypoxically inducible DNA binding complex which recognises mammalian HIF-binding sites (1996) FEBS Lett., 387, pp. 161-166
  • Nambu, J.R., Chen, W., Hu, S., Crews, S.T., The Drosophila melanogaster similar bHLH-PAS gene encodes a protein related to human hypoxia-inducible factor 1α and Drosophila single-minded (1996) Gene, 172, pp. 249-254
  • Nellen, D., Burke, R., Struhl, G., Basler, K., Direct and long-range action of a DPP morphogen gradient (1996) Cell, 85, pp. 357-368
  • Ohshiro, T., Saigo, K., Transcriptional regulation of breathless FGF receptor gene by binding of TRACHEALESS/dARNT heterodimers to three central midline elements in Drosophila developing trachea (1997) Development, 124, pp. 3975-3986
  • Ohshiro, T., Emori, Y., Saigo, K., Ligand-dependent activation of breathless FGF receptor gene in Drosophila developing trachea (2002) Mech. Dev., 114, pp. 3-11
  • Pugh, C.W., Ratcliffe, P.J., Regulation of angiogenesis by hypoxia: role of the HIF system (2003) Nat. Med., 9, pp. 677-684
  • Pugh, C.W., O'Rourke, J.F., Nagao, M., Gleadle, J.M., Ratcliffe, P.J., Activation of hypoxia-inducible factor-1; definition of regulatory domains within the α subunit (1997) J. Biol. Chem., 272, pp. 11205-11214
  • Reichman-Fried, M., Shilo, B.Z., Breathless, a Drosophila FGF receptor homolog, is required for the onset of tracheal cell migration and tracheole formation (1995) Mech. Dev., 52, pp. 265-273
  • Samakovlis, C., Hacohen, N., Manning, G., Sutherland, D.C., Guillemin, K., Krasnow, M.A., Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events (1996) Development, 122, pp. 1395-1407
  • Shiga, Y., Tanaka-Matakatu, M., Hayashi, S., A nuclear GFP/b-galactosidase fusion protein as a marker for morphogenesis in living Drosophila (1996) Dev. Growth Differ., 38, pp. 99-106
  • Shweiki, D., Itin, A., Soffer, D., Keshet, E., Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis (1992) Nature, 359, pp. 843-845
  • Sonnenfeld, M., Ward, M., Nystrom, G., Mosher, J., Stahl, S., Crews, S., The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development (1997) Development, 124, pp. 4571-4582
  • Sutherland, D., Samakovlis, C., Krasnow, M.A., branchless encodes a Drosophila Fgf homolog that controls tracheal cell migration and the pattern of branching (1996) Cell, 87, pp. 1091-1101
  • Tang, N., Wang, L., Esko, J., Giordano, F.J., Huang, Y., Gerber, H.P., Ferrara, N., Johnson, R.S., Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis (2004) Cancer Cell, 6, pp. 485-495
  • Waltenberger, J., Mayr, U., Pentz, S., Hombach, V., Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia (1996) Circulation, 94, pp. 1647-1654
  • Wang, G.L., Jiang, B.H., Rue, E.A., Semenza, G.L., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension (1995) Proc. Natl. Acad. Sci. USA, 92, pp. 5510-5514
  • Wigglesworth, V.B., The physiology of insect tracheoles (1983) Adv. Insect Physiol., 17, pp. 86-148
  • Wilk, R., Weizman, I., Shilo, B.Z., trachealess encodes a bHlh-Pas protein that is an inducer of tracheal cell fates in Drosophila (1996) Genes Dev., 10, pp. 93-102

Citas:

---------- APA ----------
Centanin, L., Dekanty, A., Romero, N., Irisarri, M., Gorr, T.A. & Wappner, P. (2008) . Cell Autonomy of HIF Effects in Drosophila: Tracheal Cells Sense Hypoxia and Induce Terminal Branch Sprouting. Developmental Cell, 14(4), 547-558.
http://dx.doi.org/10.1016/j.devcel.2008.01.020
---------- CHICAGO ----------
Centanin, L., Dekanty, A., Romero, N., Irisarri, M., Gorr, T.A., Wappner, P. "Cell Autonomy of HIF Effects in Drosophila: Tracheal Cells Sense Hypoxia and Induce Terminal Branch Sprouting" . Developmental Cell 14, no. 4 (2008) : 547-558.
http://dx.doi.org/10.1016/j.devcel.2008.01.020
---------- MLA ----------
Centanin, L., Dekanty, A., Romero, N., Irisarri, M., Gorr, T.A., Wappner, P. "Cell Autonomy of HIF Effects in Drosophila: Tracheal Cells Sense Hypoxia and Induce Terminal Branch Sprouting" . Developmental Cell, vol. 14, no. 4, 2008, pp. 547-558.
http://dx.doi.org/10.1016/j.devcel.2008.01.020
---------- VANCOUVER ----------
Centanin, L., Dekanty, A., Romero, N., Irisarri, M., Gorr, T.A., Wappner, P. Cell Autonomy of HIF Effects in Drosophila: Tracheal Cells Sense Hypoxia and Induce Terminal Branch Sprouting. Dev. Cell. 2008;14(4):547-558.
http://dx.doi.org/10.1016/j.devcel.2008.01.020