Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The haloarchaea Natrialba magadii and Haloferax volcanii, as well as the radiation-resistant bacterium Deinococcus radiodurans, were exposed to vacuum UV (VUV) radiation at the Brazilian Synchrotron Light Laboratory. Cell monolayers (containing 10 5 to 10 6 cells per sample) were prepared over polycarbonate filters and irradiated under high vacuum (10 -5 Pa) with polychromatic synchrotron radiation. N. magadii was remarkably resistant to high vacuum with a survival fraction of (3.77±0.76)×10 -2, which was larger than that of D. radiodurans (1.13±0.23) ×10 -2. The survival fraction of the haloarchaea H. volcanii, of (3.60±1.80)×10 -4, was much smaller. Radiation resistance profiles were similar between the haloarchaea and D. radiodurans for fluences up to 150J m -2. For fluences larger than 150J m -2, there was a significant decrease in the survival of haloarchaea, and in particular H. volcanii did not survive. Survival for D. radiodurans was 1% after exposure to the higher VUV fluence (1350J m -2), while N. magadii had a survival lower than 0.1%. Such survival fractions are discussed regarding the possibility of interplanetary transfer of viable microorganisms and the possible existence of microbial life in extraterrestrial salty environments such as the planet Mars and Jupiter's moon Europa. This is the first work to report survival of haloarchaea under simulated interplanetary conditions. © Copyright 2011, Mary Ann Liebert, Inc. 2011.

Registro:

Documento: Artículo
Título:Comparative survival analysis of deinococcus radiodurans and the haloarchaea natrialba magadii and haloferax volcanii exposed to vacuum ultraviolet irradiation
Autor:Abrevaya, X.C.; Paulino-Lima, I.G.; Galante, D.; Rodrigues, F.; Mauas, P.J.D.; Cortón, E.; Lage, C.D.A.S.
Filiación:Instituto de Astronomía y Física Del Espacio (IAFE), Universidad de Buenos Aires, CONICET, CC 67, Suc. 28, 1428, Buenos Aires, Argentina
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, Brazil
Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Grupo de Biosensores y Bioanálisis, Departamento de Química Biológica, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
Palabras clave:Panspermia; Planetary protection; Radiation resistance; Synchrotron; Vacuum ultraviolet; article; comparative study; Deinococcus; Halobacteriales; Haloferax volcanii; radiation exposure; survival; ultraviolet radiation; vacuum; Deinococcus; Halobacteriaceae; Haloferax volcanii; Survival Analysis; Ultraviolet Rays; Vacuum; Bacteria (microorganisms); Deinococcus radiodurans; Halobacteria; Haloferax volcanii; Natrialba magadii
Año:2011
Volumen:11
Número:10
Página de inicio:1034
Página de fin:1040
DOI: http://dx.doi.org/10.1089/ast.2011.0607
Título revista:Astrobiology
Título revista abreviado:Astrobiology
ISSN:15311074
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15311074_v11_n10_p1034_Abrevaya

Referencias:

  • Abrevaya, X.C., Mauas, P.J.D., Cortó, N.E., Microbial fuel cells applied to the metabolically based detection of extraterrestrial life (2010) Astrobiology, 10, pp. 965-971
  • Anderson, A.W., Nordan, H.C., Cain, R.F., Parrish, G., Duggan, D., Studies on a radio-resistant micrococcus I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation (1956) Food Technol, 10, pp. 575-578
  • Arrhenius, S., Die Verbreitung des Lebens im Weltenraum (1903) Umschau, 7, pp. 481-485
  • Buccino, A.P., Lemarchand, G.A., Mauas, P.J.D., Ultraviolet radiation constraints around the circumstellar habitable zones (2006) Icarus, 183 (2), pp. 491-503. , DOI 10.1016/j.icarus.2006.03.007, PII S0019103506001059
  • Buccino, A.P., Lemarchand, G.A., Mauas, P.J.D., UV habitable zones around M stars (2007) Icarus, 192, pp. 582-587
  • Cavasso Filho, R.L., Lago, A.F., Homem, M.G.P., Pilling, S., Naves De Brito, A., Delivering high-purity vacuum ultraviolet photons at the Brazilian toroidal grating monochromator (TGM) beamline (2007) Journal of Electron Spectroscopy and Related Phenomena, 156-158, pp. 168-171. , DOI 10.1016/j.elspec.2006.11.026, PII S0368204806001769, Electronic Spectroscopy and Related Phenomena
  • Cefalas, A.C., Current trends in 157 nm dry lithography (2005) Applied Surface Science, 247 (1-4), pp. 577-583. , DOI 10.1016/j.apsusc.2005.01.139, PII S0169433205001248
  • Cefalas, A.C., Dubinskii, M.A., Sarantopoulou, E., Abdulsabirov, R.Y., Korableva, S.L., Naumov, A.K., Semashko, V.V., Nicolaides, C.A., On the development of new V-UV and UV solid-state laser sources for photochemical applications (1993) Laser Chemistry, 13, pp. 143-150
  • Cefalas, A.C., Sarantopoulou, E., Kollia, Z., Efficient removal of foxing from a medieval Ptolemaic map using a molecular fluorine laser at 157 nm (2001) Applied Physics A: Materials Science and Processing, 73 (5), pp. 571-578
  • Clauss, M., Higher effectiveness of photoinactivation of bacterial spores (2006) UV Resistant Vegetative Bacteria and Mold Spores with 222nm Compared to 254nm Wavelength. Acta Hydrochimica et Hydrobiologica, 34, pp. 525-532
  • Crawford, R.L., Microbial diversity and its relationship to planetary protection (2005) Applied and Environmental Microbiology, 71 (8), pp. 4163-4168. , DOI 10.1128/AEM.71.8.4163-4168.2005
  • De La Vega, U.P., Rettberg, P., Reitz, G., Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans (2007) Advances in Space Research, 40 (11), pp. 1672-1677. , DOI 10.1016/j.asr.2007.05.022, PII S0273117707004929
  • Desmarais, D., Jablonski, P.E., Fedarko, N.S., Roberts, M.F., 2-sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea (1997) Journal of Bacteriology, 179 (10), pp. 3146-3153
  • Devincenzi, D.L., Race, M.S., Klein, H.P., Planetary protection, sample return missions and Mars exploration: History, status, and future needs (1998) Journal of Geophysical Research E: Planets, 103 (E12), pp. 28577-28585
  • Diaz, B., Schulze-Makuch, D., Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-irradiation conditions, and their relevance to possible martian life (2006) Astrobiology, 6 (2), pp. 332-347
  • Dose, K., Bieger-Dose, A., Dillmann, R., Gill, M., Kerz, O., Klein, A., Stridde, C., UV photobiochemistry under space conditions (1996) Life Sciences: Space and Mars Recent Results, 18, pp. 51-60
  • Fajardo-Cavazos, P., Schuerger, A.C., Nicholson, W.L., Exposure of DNA and Bacillus subtilis spores to simulated martian environments: Use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule (2010) Astrobiology, 10, pp. 403-411
  • Flinn, E.D., Microbe turns space waste into electricity (2004) Aerospace America, 42 (9), pp. 22-23
  • Galletta, G., Bertoloni, G., D'alessandro, M., (2010) Bacterial Survival in Martian Conditions, , arXiv:1002.4077v2 [astroph. EP]
  • Heise, M., Neff, W., Franken, O., Muranyi, P., Wunderlich, J., Sterilization of polymer foils with dielectric barrier discharges at atmospheric pressure (2004) Plasmas Polym, 9, pp. 23-33
  • Hendrickx, L., Mergeay, M., From the deep sea to the stars: human life support through minimal communities (2007) Current Opinion in Microbiology, 10 (3), pp. 231-237. , DOI 10.1016/j.mib.2007.05.007, PII S1369527407000549
  • Horneck, G., European activities in exobiology in Earth orbit: Results and perspectives (1999) Advances in Space Research, 23 (2), pp. 381-386. , PII S0273117799000617
  • Horneck, G., Klaus, D.M., Mancinelli, R.L., Space microbiology (2010) Microbiol Mol Biol Rev, 74, pp. 121-156
  • Kamekura, M., Dyall-Smith, M.L., Upasani, V., Ventosa, A., Kates, M., Diversity of alkaliphilic halobacteria: Proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively (1997) International Journal of Systematic Bacteriology, 47 (3), pp. 853-857
  • Kauri, T., Wallace, R., Kushner, D.J., Nutrition of the halophilic archaebacterium (1990) Haloferax Volcanii. Syst Appl Microbiol, 13, pp. 14-18
  • Koike, J., Oshima, T., Planetary quarantine in the Solar System-survival rates of some terrestrial organisms under simulated space conditions by proton irradiation (1993) Acta Astronaut, 29, pp. 629-632
  • Kottemann, M., Kish, A., Iloanusi, C., Bjork, S., DiRuggiero, J., Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation (2005) Extremophiles, 9 (3), pp. 219-227. , DOI 10.1007/s00792-005-0437-4
  • Mancinelli, R.L., Fahlen, T.F., Landheim, R., Klovstad, M.R., Brines and evaporites: Analogs for Martian life (2004) Advances in Space Research, 33 (8), pp. 1244-1246. , DOI 10.1016/j.asr.2003.08.034, PII S0273117703012134
  • Marion, G.M., Fritsen, C.H., Eicken, H., Payne, M.C., The search for life on Europa: Limiting environmental factors, potential habitats, and Earth analogues (2003) Astrobiology, 3, pp. 785-811
  • McCready, S., Müller, J.A., Boubriak, I., Berquist, B.R., Ng, W.L., Dassarma, S., (2005) V Irradiation Induces Homologous Recombination Genes in the Model Archaeon, Halobacterium Sp, , NRC-1. Saline Syst 1 doi:10.1186/1746-1448-1-3
  • Mullakhanbhai, M.F., Larsen, H., Halobacterium volcanii spec. nov., a Dead Sea Halobacterium with a moderate salt requirement (1975) Arch Microbiol, 104, pp. 207-214
  • Newcombe, D.A., Schuerger, A.C., Benardini, J.N., Dickinson, D., Tanner, R., Venkateswaran, K., Survival of spacecraft-associated microorganisms under simulated Martian UV irradiation (2005) Applied and Environmental Microbiology, 71 (12), pp. 8147-8156. , DOI 10.1128/AEM.71.12.8147-8156.2005
  • Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J., Setlow, P., Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments (2000) Microbiol Mol Biol Rev, 64, pp. 548-572
  • Olsson-Francis, K., Cockell, C.S., Experimental methods for studying microbial survival in extraterrestrial environments (2010) J Microbiol Meth, 80, pp. 1-13
  • Oren, A., Bioenergetic aspects of halophilism (1999) Microbiology and Molecular Biology Reviews, 63 (2), pp. 334-348
  • Paulino-Lima, I.G., Pilling, S., Janot-Pacheco, E., De Brito, A.N., Barbosa, J., Leitao, A.C., Lage, C., Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans (2010) Planet Space Sci, 58, pp. 1180-1187
  • Raulin, F., Hand, K.P., McKay, C.P., Viso, M., Exobiology and planetary protection of icy moons (2010) Space Sci Rev, 153, pp. 511-535
  • Saffary, R., Nandakumar, R., Spencer, D., Robb, F.T., Davila, J.M., Swartz, M., Ofman, L., DiRuggiero, J., Microbial survival of space vacuum and extreme ultraviolet irradiation: Strain isolation and analysis during a rocket flight (2002) FEMS Microbiology Letters, 215 (1), pp. 163-168. , DOI 10.1016/S0378-1097(02)00953-9, PII S0378109702009539
  • Sarantopoulou, E., Kollia, Z., Cefalas, A.C., Dubinskii, M.A., Nicolaides, C.A., Abdulsabirov, R.Y., Korableva, S.L., Semashko, V.V., Vacuum ultraviolet and ultraviolet fluorescence and absorption studies of Er3 +-doped LiLuF, single crystals (1994) Appl Phys Lett, 65, pp. 813-815
  • Sarantopoulou, E., Kollia, Z., Gomoiu, I., Preventing biological activity of Ulocladium sp. spores in artifacts using 157nm laser (2006) Appl Phys A Mater Sci Process, 83, pp. 663-668
  • Sarantopoulou, E., Gomoiu, I., Kollia, Z., Cefalas, A.C., Interplanetary survival probability of Aspergillus terreus spores under simulated solar vacuum ultraviolet irradiation (2011) Planet Space Sci, 59, pp. 63-78
  • Schuerger, A.C., Mancinelli, R.L., Kern, R.G., Rothschild, L.J., McKay, C.P., Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: Implications for the forward contamination of Mars (2003) Icarus, 165 (2), pp. 253-276. , DOI 10.1016/S0019-1035(03)00200-8
  • Schuerger, A.C., Richards, J.T., Newcombe, D.A., Venkateswaran, K., Rapid inactivation of seven Bacillus spp. under simulated Mars UV irradiation (2006) Icarus, 181 (1), pp. 52-62. , DOI 10.1016/j.icarus.2005.10.008, PII S0019103505004021
  • Steensland, H., Larsen, H., A study of the cell envelope of the halobacteria (1969) J Gen Microbiol, 55, pp. 325-336
  • Tauscher, C., Schuerger, A.C., Nicholson, W.L., Survival and germinability of Bacillus subtilis spores exposed to simulated Mars solar radiation: Implications for life detection and planetary protection (2006) Astrobiology, 6 (4), pp. 592-605. , DOI 10.1089/ast.2006.6.592
  • Tindall, B.J., Mills, A.A., Grant, W.D., Natronobacterium gen. nov. and Natronococcus gen. nov., two genera of haloalkaliphilic archaebacteria (1984) Syst Appl Microbiol, 5, pp. 41-57
  • Tobiska, W.K., Woods, T., Eparvier, F., Viereck, R., Floyd, L., Bouwer, D., Rottman, G., White, O.R., The SOLAR2000 empirical solar irradiance model and forecast tool (2000) Journal of Atmospheric and Solar-Terrestrial Physics, 62, pp. 1233-1250
  • Wassmann, M., Moeller, R., Reitz, G., Rettberg, P., Adaptation of Bacillus subtilis cells to archean-like UV climate: Relevant hints of microbial evolution to remarkably increased radiation resistance (2010) Astrobiology, 10, pp. 605-615
  • Yagi, H., Nakajima, K., Koswattage, K.R., Nakagawa, K., Katayanagi, H., Mitsuke, K., Photoabsorption cross section of C-70 thin films from visible to vacuum ultraviolet (2009) J Chem Phys, 130. , doi:10.1063/1.3153275

Citas:

---------- APA ----------
Abrevaya, X.C., Paulino-Lima, I.G., Galante, D., Rodrigues, F., Mauas, P.J.D., Cortón, E. & Lage, C.D.A.S. (2011) . Comparative survival analysis of deinococcus radiodurans and the haloarchaea natrialba magadii and haloferax volcanii exposed to vacuum ultraviolet irradiation. Astrobiology, 11(10), 1034-1040.
http://dx.doi.org/10.1089/ast.2011.0607
---------- CHICAGO ----------
Abrevaya, X.C., Paulino-Lima, I.G., Galante, D., Rodrigues, F., Mauas, P.J.D., Cortón, E., et al. "Comparative survival analysis of deinococcus radiodurans and the haloarchaea natrialba magadii and haloferax volcanii exposed to vacuum ultraviolet irradiation" . Astrobiology 11, no. 10 (2011) : 1034-1040.
http://dx.doi.org/10.1089/ast.2011.0607
---------- MLA ----------
Abrevaya, X.C., Paulino-Lima, I.G., Galante, D., Rodrigues, F., Mauas, P.J.D., Cortón, E., et al. "Comparative survival analysis of deinococcus radiodurans and the haloarchaea natrialba magadii and haloferax volcanii exposed to vacuum ultraviolet irradiation" . Astrobiology, vol. 11, no. 10, 2011, pp. 1034-1040.
http://dx.doi.org/10.1089/ast.2011.0607
---------- VANCOUVER ----------
Abrevaya, X.C., Paulino-Lima, I.G., Galante, D., Rodrigues, F., Mauas, P.J.D., Cortón, E., et al. Comparative survival analysis of deinococcus radiodurans and the haloarchaea natrialba magadii and haloferax volcanii exposed to vacuum ultraviolet irradiation. Astrobiology. 2011;11(10):1034-1040.
http://dx.doi.org/10.1089/ast.2011.0607