Artículo

Gargiulo, J.; Brick, T.; Violi, I.L.; Herrera, F.C.; Shibanuma, T.; Albella, P.; Requejo, F.G.; Cortés, E.; Maier, S.A.; Stefani, F.D. "Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing" (2017) Nano Letters. 17(9):5747-5755
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Optical printing holds great potential to enable the use of the vast variety of colloidal nanoparticles (NPs) in nano- and microdevices and circuits. By means of optical forces, it enables the direct assembly of NPs, one by one, onto specific positions of solid surfaces with great flexibility of pattern design and no need of previous surface patterning. However, for unclear causes it was not possible to print identical NPs closer to each other than 300 nm. Here, we show that the repulsion restricting the optical printing of close by NPs arises from light absorption by the printed NPs and subsequent local heating. By optimizing heat dissipation, it is possible to reduce the minimum separation between NPs. Using a reduced graphene oxide layer on a sapphire substrate, we demonstrate for the first time the optical printing of Au - Au NP dimers. Modeling the experiments considering optical, thermophoretic, and thermo-osmotic forces we obtain a detailed understanding and a clear pathway for the optical printing fabrication of complex nano structures and circuits based on connected colloidal NPs. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing
Autor:Gargiulo, J.; Brick, T.; Violi, I.L.; Herrera, F.C.; Shibanuma, T.; Albella, P.; Requejo, F.G.; Cortés, E.; Maier, S.A.; Stefani, F.D.
Filiación:Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad de Buenos Aires, C1425FQD, Argentina
Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom
University Institute for Intelligent Systems and Numerical Applications in Engineering (SIANI), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35017, Spain
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Diagonal 113 y 64, La Plata, 1900, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad de Buenos Aires, C1428EAH, Argentina
Palabras clave:colloidal patterning; graphene; optical forces; Plasmonics; reduced graphene oxide; thermo-osmosis; thermophoresis; Electromagnetic wave absorption; Graphene; Light absorption; Nanoparticles; Nanostructures; Printing; Sapphire; Thermophoresis; Colloidal nanoparticles; Colloidal patterning; Optical force; Photothermal forces; Plasmonics; Reduced graphene oxides; Sapphire substrates; Surface patterning; Gold
Año:2017
Volumen:17
Número:9
Página de inicio:5747
Página de fin:5755
DOI: http://dx.doi.org/10.1021/acs.nanolett.7b02713
Título revista:Nano Letters
Título revista abreviado:Nano Lett.
ISSN:15306984
CODEN:NALEF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v17_n9_p5747_Gargiulo

Referencias:

  • Sun, Y., Xia, Y., (2002) Science, 298, pp. 2176-2179
  • Ye, X., Jin, L., Caglayan, H., Chen, J., Xing, G., Zheng, C., Doan-Nguyen, V., Murray, C.B., (2012) ACS Nano, 6, pp. 2804-2817
  • Ghosh Chaudhuri, R., Paria, S., (2012) Chem. Rev., 112, pp. 2373-2433
  • Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E., (2009) Angew. Chem., Int. Ed., 48, pp. 60-103
  • Sperling, R.A., Parak, W.J., (2010) Philos. Trans. R. Soc., A, 368, pp. 1333-1383
  • Tan, S.J., Campolongo, M.J., Luo, D., Cheng, W., (2011) Nat. Nanotechnol., 6, pp. 268-276
  • Flauraud, V., Mastrangeli, M., Bernasconi, G.D., Butet, J., Alexander, D.T.L., Shahrabi, E., Martin, O.J.F., Brugger, J., (2016) Nat. Nanotechnol., 12, pp. 73-80
  • Zhou, Y., Zhou, X., Park, D.J., Torabi, K., Brown, K.A., Jones, M.R., Zhang, C., Schatz, G.C., (2014) Nano Lett., 14, pp. 2157-2161
  • Wang, Y., Wang, Y., Breed, D.R., Manoharan, V.N., Feng, L., Hollingsworth, A.D., Weck, M., Pine, D.J., (2012) Nature, 491, pp. 51-55
  • Acuna, G.P., Möller, F.M., Holzmeister, P., Beater, S., Lalkens, B., Tinnefeld, P., (2012) Science, 338, pp. 506-510
  • Vietz, C., Kaminska, I., Sanz Paz, M., Tinnefeld, P., Acuna, G.P., (2017) ACS Nano, 11, pp. 4969-4975
  • Fazio, B., D'Andrea, C., Foti, A., Messina, E., Irrera, A., Donato, M.G., Villari, V., Gucciardi, P.G., (2016) Sci. Rep., 6, p. 26952
  • Svedberg, F., Li, Z., Xu, H., Käll, M., (2006) Nano Lett., 6, pp. 2639-2641
  • Urban, A.S., Lutich, A.A., Stefani, F.D., Feldmann, J., (2010) Nano Lett., 10, pp. 4794-4798
  • Nedev, S., Urban, A.S., Lutich, A.A., Feldmann, J., (2011) Nano Lett., 11, pp. 5066-5070
  • Do, J., Fedoruk, M., Jäckel, F., Feldmann, J., (2013) Nano Lett., 13, pp. 4164-4168
  • Violi, I.L., Gargiulo, J., Von Bilderling, C., Cortes, E., Stefani, F.D., (2016) Nano Lett., 16, pp. 6529-6533
  • Spesyvtseva, S.E.S., Dholakia, K., (2016) ACS Photonics, 3, pp. 719-736
  • Guffey, M.J., Miller, R.L., Gray, S.K., Scherer, N.F., (2011) Nano Lett., 11, pp. 4058-4066
  • Huergo, M.A., Maier, C.M., Castez, M.F., Vericat, C., Nedev, S., Salvarezza, R.C., Urban, A.S., Feldmann, J., (2016) ACS Nano, 10, pp. 3614-3621
  • Hoogenboom, J.P., Vossen, D.L.J., Faivre-Moskalenko, C., Dogterom, M., Van Blaaderen, A., (2002) Appl. Phys. Lett., 80, pp. 4828-4830
  • Guffey, M.J., Scherer, N.F., (2010) Nano Lett., 10, pp. 4302-4308
  • Bao, Y., Yan, Z., Scherer, N.F., (2014) J. Phys. Chem. C, 118, pp. 19315-19321
  • Gargiulo, J., Cerrota, S., Cortés, E., Violi, I.L., Stefani, F.D., (2016) Nano Lett., 16, pp. 1224-1229
  • Wang, K., Schonbrun, E., Steinvurzel, P., Crozier, K.B., (2011) Nat. Commun., 2, p. 469
  • Juan, M.L., Righini, M., Quidant, R., (2011) Nat. Photonics, 5, pp. 349-356
  • Ohlinger, A., Nedev, S., Lutich, A.A., Feldmann, J., (2011) Nano Lett., 11, pp. 1770-1774
  • Cuche, A., Canaguier-Durand, A., Devaux, E., Hutchison, J.A., Genet, C., Ebbesen, T.W., (2013) Nano Lett., 13, pp. 4230-4235
  • Seol, Y., Carpenter, A.E., Perkins, T.T., (2006) Opt. Lett., 31, pp. 2429-2431
  • Roxworthy, B.J., Bhuiya, A.M., Vanka, S.P., Toussaint, K.C., (2014) Nat. Commun., 5, pp. 1-8
  • Yang, M., Ripoll, M., (2016) Soft Matter, 12, pp. 8564-8573
  • Donner, J.S., Baffou, G., McCloskey, D., Quidant, R., (2011) ACS Nano, 5, pp. 5457-5462
  • Braun, M., Cichos, F., (2013) ACS Nano, 7, pp. 11200-11208
  • Braun, M., Bregulla, A.P., Günther, K., Mertig, M., Cichos, F., (2015) Nano Lett., 15, pp. 5499-5505
  • Lin, L., Peng, X., Wang, M., Scarabelli, L., Mao, Z., Liz-Marzán, L.M., Becker, M.F., Zheng, Y., (2016) ACS Nano, 10, pp. 9659-9668
  • Duhr, S., Braun, D., (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 19678-19682
  • Reichl, M., Herzog, M., Götz, A., Braun, D., (2014) Phys. Rev. Lett., 112, p. 198101
  • Jiang, H.-R., Yoshinaga, N., Sano, M., (2010) Phys. Rev. Lett., 105, p. 268302
  • Nedev, S., Carretero-Palacios, S., Kühler, P., Lohmüller, T., Urban, A.S., Anderson, L.J.E., Feldmann, J., (2015) ACS Photonics, 2, pp. 491-496
  • Simoncelli, S., Summer, J., Nedev, S., Kühler, P., Feldmann, J., (2016) Small, 12, pp. 2854-2858
  • Kyrsting, A., Bendix, P.M., Stamou, D.G., Oddershede, L.B., (2011) Nano Lett., 11, pp. 888-892
  • Dolinsky, Y., Elperin, T., (2003) J. Appl. Phys., 93, pp. 4321-4327
  • Chvátal, L., Brzobohatý, O., Zemánek, P., (2015) Opt. Rev., 22, pp. 157-161
  • Dholakia, K., Zemánek, P., (2010) Rev. Mod. Phys., 82, pp. 1767-1791
  • Urban, A.S., Carretero-Palacios, S., Lutich, A.A., Lohmüller, T., Feldmann, J., Jäckel, F., (2014) Nanoscale, 6, pp. 4458-4474
  • Namura, K., Nakajima, K., Suzuki, M., (2017) Sci. Rep., 7, p. 45776
  • Setoura, K., Ito, S., Miyasaka, H., (2017) Nanoscale, 9, pp. 719-730
  • Baral, S., Green, A.J., Livshits, M.Y., Govorov, A.O., Richardson, H.H., (2014) ACS Nano, 8, pp. 1439-1448
  • Carlson, M.T., Green, A.J., Richardson, H.H., (2012) Nano Lett., 12, pp. 1534-1537
  • Fang, Z., Zhen, Y., Neumann, O., Polman, A., García De Abajo, F.J., Nordlander, P., Halas, N.J., (2013) Nano Lett., 13, pp. 1736-1742
  • Hou, L., Yorulmaz, M., Verhart, N.R., Orrit, M., (2015) New J. Phys., 17, p. 013050
  • Anderson, J., (1989) Annu. Rev. Fluid Mech., 21, pp. 61-99
  • Bregulla, A.P., Würger, A., Günther, K., Mertig, M., Cichos, F., (2016) Phys. Rev. Lett., 116, p. 188303
  • Würger, A., (2010) Rep. Prog. Phys., 73, p. 126601
  • Bickel, T., Zecua, G., Würger, A., (2014) Phys. Rev. e, 89, p. 50303
  • Epstein, V.P.S., (1929) Eur. Phys. J. A, 54, pp. 537-563
  • Piazza, R., Parola, A., (2008) J. Phys.: Condens. Matter, 20, p. 153102
  • Michaelides, E.E., (2015) Int. J. Heat Mass Transfer, 81, pp. 179-187
  • Giddings, J.C.C., Shinudu, P.M., Semenov, S.N., (1995) J. Colloid Interface Sci., 176, pp. 454-458
  • Helden, L., Eichhorn, R., Bechinger, C., (2015) Soft Matter, 11, pp. 2379-2386
  • Würger, A., (2016) Phys. Rev. Lett., 116, p. 138302
  • Agayan, R.R., Gittes, F., Kopelman, R., Schmidt, C.F., (2002) Appl. Opt., 41, pp. 2318-2327
  • Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., (2008) Nano Lett., 8, pp. 902-907
  • Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K., (2008) Science, 320, p. 1308
  • Jiang, H.R., Wada, H., Yoshinaga, N., Sano, M., (2009) Phys. Rev. Lett., 102, pp. 100-103
  • Cai, B., Huang, L., Zhang, H., Sun, Z., Zhang, Z., Zhang, G.J., (2015) Biosens. Bioelectron., 74, pp. 329-334
  • Artiles, M.S., Rout, C.S., Fisher, T.S., (2011) Adv. Drug Delivery Rev., 63, pp. 1352-1360
  • Zhao, Y., Zhu, Y., (2015) Nanoscale, 7, pp. 14561-14576

Citas:

---------- APA ----------
Gargiulo, J., Brick, T., Violi, I.L., Herrera, F.C., Shibanuma, T., Albella, P., Requejo, F.G.,..., Stefani, F.D. (2017) . Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing. Nano Letters, 17(9), 5747-5755.
http://dx.doi.org/10.1021/acs.nanolett.7b02713
---------- CHICAGO ----------
Gargiulo, J., Brick, T., Violi, I.L., Herrera, F.C., Shibanuma, T., Albella, P., et al. "Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing" . Nano Letters 17, no. 9 (2017) : 5747-5755.
http://dx.doi.org/10.1021/acs.nanolett.7b02713
---------- MLA ----------
Gargiulo, J., Brick, T., Violi, I.L., Herrera, F.C., Shibanuma, T., Albella, P., et al. "Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing" . Nano Letters, vol. 17, no. 9, 2017, pp. 5747-5755.
http://dx.doi.org/10.1021/acs.nanolett.7b02713
---------- VANCOUVER ----------
Gargiulo, J., Brick, T., Violi, I.L., Herrera, F.C., Shibanuma, T., Albella, P., et al. Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing. Nano Lett. 2017;17(9):5747-5755.
http://dx.doi.org/10.1021/acs.nanolett.7b02713