Artículo

Álvarez, Y.D.; Fauerbach, J.A.; Pellegrotti, J.V.; Jovin, T.M.; Jares-Erijman, E.A.; Stefani, F.D. "Influence of gold nanoparticles on the kinetics of α-synuclein aggregation" (2013) Nano Letters. 13(12):6156-6163
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

α-synuclein (AS) is a small (140 amino acids), abundant presynaptic protein, which lacks a unique secondary structure in aqueous solution. Amyloid aggregates of AS in dopaminergic neurons of the midbrain are the hallmark of Parkinson's disease (PD). The process of aggregation involves a series of complex structural transitions from innocuous monomeric AS to oligomeric, presumably neurotoxic, forms and finally to fibril formation. Despite its potential importance for understanding PD pathobiology and devising rational, targeted therapeutic strategies, the details of the aggregation process remain largely unknown. Methodologies and reagents capable of controlling the aggregation kinetics are essential tools for the investigation of the molecular mechanisms of amyloid diseases. In this work, we investigated the influence of citrate-capped gold nanoparticles on the aggregation kinetics of AS using a fluorescent probe (MFC) sensitive to the polarity of the molecular microenvironment via excited state intramolecular proton transfer (ESIPT). The particular effects on the half time, nucleation time, and growth rate were ascertained. Gold nanoparticles produced a strong acceleration of protein aggregation with an influence on both the nucleation and growth phases of the overall mechanism. The effects were dependent on the size and concentration of the nanoparticles, being strongest for nanoparticles 10 nm in diameter, which produced a 3-fold increase in the overall aggregation rate at concentrations as low as 20 nM. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Influence of gold nanoparticles on the kinetics of α-synuclein aggregation
Autor:Álvarez, Y.D.; Fauerbach, J.A.; Pellegrotti, J.V.; Jovin, T.M.; Jares-Erijman, E.A.; Stefani, F.D.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Instituto de Física de Buenos Aires (IFIBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Laboratory for Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
Palabras clave:amyloid aggregation; amyloid proteins; Gold nanoparticles; Parkinson; Aggregation kinetics; Amyloid proteins; Excited-state intramolecular proton transfer; Gold Nanoparticles; Nucleation and growth; Parkinson; Secondary structures; Structural transitions; Agglomeration; Amino acids; Glycoproteins; Gold; Kinetics; Metal nanoparticles; Neurons; Proteins; alpha synuclein; amyloid; gold; metal nanoparticle; article; chemistry; human; kinetics; Parkinson disease; pathology; protein secondary structure; alpha-Synuclein; Amyloid; Gold; Humans; Kinetics; Metal Nanoparticles; Parkinson Disease; Protein Structure, Secondary
Año:2013
Volumen:13
Número:12
Página de inicio:6156
Página de fin:6163
DOI: http://dx.doi.org/10.1021/nl403490e
Título revista:Nano Letters
Título revista abreviado:Nano Lett.
ISSN:15306984
CODEN:NALEF
CAS:alpha synuclein, 154040-18-3; amyloid, 11061-24-8; gold, 7440-57-5; Amyloid; Gold, 7440-57-5; alpha-Synuclein
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v13_n12_p6156_Alvarez

Referencias:

  • Breydo, L., Wu, J.W., Uversky, V.N., α-synuclein misfolding and Parkinson's disease (2012) Biochim. Biophys. Acta, 1822, pp. 261-285
  • Lansbury, P.T., Lashuel, H.A., Review Article A century-old debate on protein aggregation and neurodegeneration enters the clinic (2006) Nature, 443, pp. 774-779
  • Winner, B., In vivo demonstration that alpha-synuclein oligomers are toxic (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 4194-4199
  • Steiner, J.A., Angot, E., Brundin, P., A deadly spread: Cellular mechanisms of α-synuclein transfer (2011) Cell Death Differ., 18, pp. 1425-1433
  • Luk, K.C., Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice (2012) Science, 338, pp. 949-953
  • Pornsuwan, S., Long-Range Distances in Amyloid Fibrils of α-Synuclein from PELDOR Spectroscopy (2013) Angew. Chem., , 10.1002/ange.201304747
  • Fauerbach, J.A., Supramolecular non-amyloid intermediates in the early stages of α-synuclein aggregation (2012) Biophys. J., 102, pp. 1127-1136
  • Roberti, M.J., Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy (2012) Biophys. J., 102, pp. 1598-1607
  • Linse, S., Nucleation of protein fibrillation by nanoparticles (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 8691-8696
  • Cabaleiro-Lago, C., Szczepankiewicz, O., Linse, S., The Effect of Nanoparticles on Amyloid Aggregation Depends on the Protein Stability and Intrinsic Aggregation Rate (2012) Langmuir, 28, pp. 1852-1857
  • Cabaleiro-Lago, C., Quinlan-Pluck, F., Lynch, I., Dawson, K.A., Linse, S., Dual Effect of Amino Modified Polystyrene Nanoparticles on Amyloid β Protein Fibrillation (2010) ACS Chem. Neurosci., 1, pp. 279-287
  • Cabaleiro-Lago, C., Inhibition of Amyloid Beta Protein Fibrillation by Polymeric Nanoparticles (2008) J. Am. Chem. Soc., 130, pp. 15437-15443
  • Brambilla, D., PEGylated Nanoparticles Bind to and Alter Amyloid-Beta Peptide Conformation: Toward Engineering of Functional Nanomedicines for Alzheimer's Disease (2012) ACS Nano, 6, pp. 5897-5908
  • Roberti, M.J., Quantum Dots as Ultrasensitive Nanoactuatorsand Sensors of Amyloid Aggregation in Live Cells (2009) J. Am. Chem. Soc., 131, pp. 8102-8107
  • Roberti, M.J., Giordano, L., Jovin, T.M., Jares-Erijman, E.A., FRET imaging by k(t)/k(f) (2011) ChemPhysChem, 12, pp. 563-566
  • Jain, P.K., Lee, K.S., El-Sayad, I.H., El-Sayed, M.A., Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine (2006) J. Phys. Chem. B, 110, p. 7238
  • Chithrani, B.D., Ghazani, A.A., Chan, W.C.W., Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells (2006) Nano Lett., 6, pp. 662-668
  • Shukla, R., Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview (2005) Langmuir, 21, pp. 10644-10654
  • Sperling, R.A., Rivera Gil, P., Zhang, F., Zanella, M., Parak, W.J., Biological applications of gold nanoparticles (2008) Chem. Soc. Rev., 37, pp. 1896-1908
  • Murphy, C.J., Gold nanoparticles in biology: Beyond toxicity to cellular imaging (2008) Acc. Chem. Res., 41, pp. 1721-1730
  • Khlebtsov, N., Dykman, L., Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies (2011) Chem. Soc. Rev., 40, pp. 1647-1671
  • Yang, J.A., Study of Wild-Type α-Synuclein Binding and Orientation on Gold Nanoparticles (2013) Langmuir, 29, pp. 4603-4615
  • Ai Tran, H.N., A novel class of potential prion drugs: Preliminary in vitro and in vivo data for multilayer coated gold nanoparticles (2010) Nanoscale, 2, pp. 2724-2732
  • Bastus, N.G., Gold nanoparticles for selective and remote heating of β-amyloid protein aggregates (2007) Mater. Sci. Eng., C, 27, pp. 1236-1240
  • Kogan, M.J., Nanoparticle-Mediated Local and Remote Manipulation of Protein Aggregation (2006) Nano Lett., 6, pp. 110-115
  • Fink, A.L., The Aggregation and Fibrillation of alpha-Synuclein (2006) Acc. Chem. Res., 39, pp. 628-634
  • Giehm, L., Lorenzen, N., Otzen, D.E., Assays for α-synuclein aggregation (2011) Methods, 53, pp. 295-305
  • Kaylor, J., Characterization of Oligomeric Intermediates in a-Synuclein Fibrillation: FRET Studies of Y125W/Y133F/Y136F alpha-Synuclein (2005) J. Mol. Biol., 353, pp. 357-372
  • Outeiro, T.F., Formation of toxic oligomeric alpha-synuclein species in living cells (2008) PLoS One, 3, p. 1867
  • Morris, A.M., Finke, R.G., Alpha-synuclein aggregation variable temperature and variable pH kinetic data: A re-analysis using the Finke-Watzky 2-step model of nucleation and autocatalytic growth (2009) Biophys. Chem., 140, pp. 9-15
  • Morris, A.M., Watzky, M.A., Finke, R.G., Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature (2009) Biochim. Biophys. Acta, 1794, pp. 375-397
  • Lee, C.C., Nayak, A., Sethuraman, A., Belfort, G., McRae, G.J., A three-stage kinetic model of amyloid fibrillation (2007) Biophys. J., 92 (10), pp. 3448-3458
  • Bertoncini, C.W., Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 1430-1435
  • Yushchenko, D.A., Fauerbach, J.A., Thirunavukkuarasu, S., Jares-Erijman, E.A., Jovin, T.M., Fluorescent Ratiometric MFC Probe Sensitive to Early Stages of Alpha-Synuclein Aggregation (2010) J. Am. Chem. Soc., 132, pp. 7860-7861
  • Bertoncini, C.W., Celej, M.S., Small molecule fluorescent probes for the detection of amyloid self-assembly in vitro and in vivo (2011) Curr. Protein Pept. Sci., 12, pp. 205-220
  • Groenning, M., Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status (2010) J. Chem. Biol., 3, pp. 1-18
  • Coronado, E.A., Encina, E.R., Stefani, F.D., Optical properties of metallic nanoparticles: Manipulating light, heat and forces at the nanoscale (2011) Nanoscale, 3, pp. 4042-4059
  • Morris, A.M., Watzky, M.A., Agar, J.N., Finke, R.G., Fitting neurological protein aggregation kinetic data via a 2-step, minimal/"Ockham's razor" model: The Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth (2008) Biochemistry, 47, pp. 2413-2427
  • Watzky, M.A., Morris, A.M., Ross, E.D., Finke, R.G., Fitting Yeast and Mammalian Prion Aggregation Kinetic Data with the Finke-Watzky Two-Step Model of Nucleation and Autocatalytic Growth (2008) Biochemistry, 47, pp. 10790-10800
  • Vertegel, A.A., Siegel, R.W., Dordick, J.S., Silica Nanoparticle Size Influences the Structure and Enzymatic Activity of Adsorbed Lysozyme (2004) Langmuir, 20, pp. 6800-6807
  • Shang, W., Nuffer, J.H., Dordick, J.S., Siegel, R.W., Unfolding of ribonuclease A on silica nanoparticle surfaces (2007) Nano Lett., 7, pp. 1991-1995
  • Goy-López, S., Physicochemical Characteristics of Protein-NP Bioconjugates: The Role of Particle Curvature and Solution Conditions on Human Serum Albumin Conformation and Fibrillogenesis Inhibition (2012) Langmuir, 28, pp. 9113-9126
  • Fei, L., Perrett, S., Effect of nanoparticles on protein folding and fibrillogenesis (2009) Int. J. Mol. Sci., 10, pp. 646-655
  • Martin, M.N., Basham, J.I., Chando, P., Eah, S.-K., Charged Gold Nanoparticles in Non-Polar Solvents: 10-min Synthesis and 2D Self-Assembly (2010) Langmuir, 26, pp. 7410-7417
  • Kimling, J., Turkevich Method for Gold Nanoparticle Synthesis Revisited (2006) J. Phys. Chem. B, 110, pp. 15700-15707

Citas:

---------- APA ----------
Álvarez, Y.D., Fauerbach, J.A., Pellegrotti, J.V., Jovin, T.M., Jares-Erijman, E.A. & Stefani, F.D. (2013) . Influence of gold nanoparticles on the kinetics of α-synuclein aggregation. Nano Letters, 13(12), 6156-6163.
http://dx.doi.org/10.1021/nl403490e
---------- CHICAGO ----------
Álvarez, Y.D., Fauerbach, J.A., Pellegrotti, J.V., Jovin, T.M., Jares-Erijman, E.A., Stefani, F.D. "Influence of gold nanoparticles on the kinetics of α-synuclein aggregation" . Nano Letters 13, no. 12 (2013) : 6156-6163.
http://dx.doi.org/10.1021/nl403490e
---------- MLA ----------
Álvarez, Y.D., Fauerbach, J.A., Pellegrotti, J.V., Jovin, T.M., Jares-Erijman, E.A., Stefani, F.D. "Influence of gold nanoparticles on the kinetics of α-synuclein aggregation" . Nano Letters, vol. 13, no. 12, 2013, pp. 6156-6163.
http://dx.doi.org/10.1021/nl403490e
---------- VANCOUVER ----------
Álvarez, Y.D., Fauerbach, J.A., Pellegrotti, J.V., Jovin, T.M., Jares-Erijman, E.A., Stefani, F.D. Influence of gold nanoparticles on the kinetics of α-synuclein aggregation. Nano Lett. 2013;13(12):6156-6163.
http://dx.doi.org/10.1021/nl403490e