Artículo

McDonald, M.P.; Eltom, A.; Vietmeyer, F.; Thapa, J.; Morozov, Y.V.; Sokolov, D.A.; Hodak, J.H.; Vinodgopal, K.; Kamat, P.V.; Kuno, M. "Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics" (2013) Nano Letters. 13(12):5777-5784
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Graphene oxide (GO) is an important precursor in the production of chemically derived graphene. During reduction, GO's electrical conductivity and band gap change gradually. Doping and chemical functionalization are also possible, illustrating GO's immense potential in creating functional devices through control of its local hybridization. Here we show that laser-induced photolysis controllably reduces individual single-layer GO sheets. The reaction can be followed in real time through sizable decreases in GO's photoluminescence efficiency along with spectral blueshifts. As-produced reduced graphene oxide (rGO) sheets undergo additional photolysis, characterized by dramatic emission enhancements and spectral redshifts. Both GO's reduction and subsequent conversion to photobrightened rGO are captured through movies of their photoluminescence kinetics. Rate maps illustrate sizable spatial and temporal heterogeneities in sp2 domain growth and reveal how reduction "flows" across GO and rGO sheets. The observed heterogeneous reduction kinetics provides mechanistic insight into GO's conversion to chemically derived graphene and highlights opportunities for overcoming its dynamic, chemical disorder. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics
Autor:McDonald, M.P.; Eltom, A.; Vietmeyer, F.; Thapa, J.; Morozov, Y.V.; Sokolov, D.A.; Hodak, J.H.; Vinodgopal, K.; Kamat, P.V.; Kuno, M.
Filiación:Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Department of Physics, Illinois Wesleyan University, Bloomington, IL 61701, United States
Department of Physics, Taras Shevchenko National University of Kiev, Kiev, Ukraine
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Físca, University of Buenos Aires, Buenos Aires, Argentina
Department of Chemistry, North Carolina Central University, Durham, NC 27707, United States
Palabras clave:fluorescence intermittency; Graphene oxide; photobrightening; photolysis; reduced graphene oxide; reduction; Chemically derived graphene; Fluorescence intermittency; Graphene oxides; Photobrightening; Photoluminescence efficiency; Reduced graphene oxides; Reduced graphene oxides (RGO); Spatial and temporal heterogeneity; Kinetics; Photoluminescence; Photolysis; Reduction; Graphene; graphite; organic compound; oxide; article; chemistry; electric conductivity; kinetics; photolysis; Electric Conductivity; Graphite; Kinetics; Organic Chemicals; Oxides; Photolysis
Año:2013
Volumen:13
Número:12
Página de inicio:5777
Página de fin:5784
DOI: http://dx.doi.org/10.1021/nl402057j
Título revista:Nano Letters
Título revista abreviado:Nano Lett.
ISSN:15306984
CODEN:NALEF
CAS:graphite, 7782-42-5; oxide, 16833-27-5; Graphite, 7782-42-5; Organic Chemicals; Oxides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v13_n12_p5777_McDonald

Referencias:

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., (2005) Nature, 438, pp. 197-200
  • Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Geim, A.K., (2007) Science, 315, pp. 1379-1379
  • Katsnelson, M.I., Novoselov, K.S., Geim, A.K., (2006) Nat. Phys., 2, pp. 620-625
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S., (2010) Adv. Mater., 22, pp. 3906-3924
  • Luo, Z., Vora, P.M., Mele, E.J., Johnson, A.T.C., Kikkawa, J.M., (2009) Appl. Phys. Lett., 94, pp. 1119091-1119093
  • Yan, J.-A., Xian, L., Chou, M.Y., (2009) Phys. Rev. Lett., 103, pp. 0868021-0868024
  • Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., Chhowalla, M., (2009) J. Phys. Chem. C, 113, pp. 15768-15771
  • Gómez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K., (2007) Nano Lett., 7, pp. 3499-3503
  • Gokus, T., Nair, R.R., Bonetti, A., Bohmler, M., Lombardo, A., Novoselov, K.S., Geim, A.K., Hartschuh, A., (2009) ACS Nano, 3, pp. 3963-3968
  • Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhass, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Ruoff, R.S., (2007) Carbon, 45, pp. 1558-1565
  • Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., (2008) Nat. Nanotechnol., 3, pp. 101-105
  • Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M., (2009) Nat. Chem., 1, pp. 403-408
  • Loh, K.P., Bao, Q., Eda, G., Chhowalla, M., (2010) Nat. Chem., 2, pp. 1015-1024
  • Wang, X., Zhi, L., Müllen, K., (2008) Nano Lett., 8, pp. 323-327
  • McAllister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Aksay, I.A., (2007) Chem. Mater., 19, pp. 4396-4404
  • Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., Dai, H., (2008) Nat. Nanotechnol., 3, pp. 538-542
  • Gilje, S., Dubin, S., Badakshan, A., Farrar, J., Dansczyk, S.A., Kaner, R.B., (2010) Adv. Mater., 22, pp. 419-423
  • Williams, G., Seger, B., Kamat, P.V., (2008) ACS Nano, 2, pp. 1487-1491
  • Plotnikov, V.G., Smirnov, V.A., Alfimov, M.V., Shul'Ga, Y.M., (2011) High Energy Chem., 45, pp. 411-415
  • Sokolov, D.A., Shepperd, K.R., Orlando, T.M., (2010) J. Phys. Chem. Lett., 1, pp. 2633-2636
  • Zhou, Y., Bao, Q., Varghese, B., Tang, L.A.L., Tan, C.K., Sow, C.-H., Loh, K.P., (2010) Adv. Mater., 22, pp. 67-71
  • Park, S., Ruoff, R.S., (2009) Nat. Nanotechnol., 4, pp. 217-224
  • Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., (2010) Chem. Soc. Rev., 39, pp. 228-240
  • Paci, J.T., Belytschko, T., Schatz, G.C., (2007) J. Phys. Chem. C, 111, pp. 18099-18111
  • Hummers, W.S., Offeman, R.E., (1958) J. Am. Chem. Soc., 80, pp. 1339-1339
  • Kim, J., Cote, L.J., Kim, F., Huang, J., (2010) J. Am. Chem. Soc., 132, pp. 260-267
  • Exarhos, A.L., Turk, M.E., Kikkawa, J.M., (2013) Nano Lett., 13, pp. 344-349
  • Chien, C.-T., Li, S.-S., Lai, W.-J., Yeh, Y.-C., Chen, H.-A., Chen, I.-S., Chen, L.-C., Chen, C.-W., (2012) Angew. Chem., Int. Ed., 51, pp. 6662-6666
  • Galande, C., Mohite, A.D., Naumov, A.V., Gao, W., Ci, L., Ajayan, A., Gao, H., Ajayan, P.M., (2011) Sci. Rep., 1, pp. 1-5
  • Mak, K.F., Ju, L., Wang, F., Heinz, T.F., (2012) Solid State Commun., 152, pp. 1341-1349
  • Eda, G., Fanchini, G., Chhowalla, M., (2008) Nat. Nanotechnol., 3, pp. 270-274
  • Eda, G., Lin, Y.-Y., Mattevi, C., Yamaguchi, H., Chen, H.-A., Chen, I.-S., Chen, C.-W., Chhowalla, M., (2010) Adv. Mater., 22, pp. 505-509
  • Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, pp. 1347-1363
  • Petridis, C., Lin, Y.-H., Sawa, K., Eda, G., Kymakis, E., Anthopoulos, T.D., Stratakis, E., (2013) Appl. Phys. Lett., 102, pp. 0931151-0931155
  • Tuinstra, F., Koenig, J.L., (1970) J. Chem. Phys., 53, pp. 1126-1130
  • Ferrari, A.C., Robertson, J., (2000) Phys. Rev. B, 61, pp. 14095-14107
  • Geim, A.K., Novoselov, K.S., (2007) Nat. Mater., 6, pp. 183-191
  • Matsumoto, Y., Koinuma, M., Kim, S.Y., Wantanabe, Y., Taniguchi, T., Hatakeyama, K., Tateishi, H., Ida, S., (2010) ACS Appl. Mater. Interfaces, 2, pp. 3461-3466
  • Cote, L.J., Cruz-Silva, R., Huang, J., (2009) J. Am. Chem. Soc., 131, pp. 11027-11032
  • Andryushina, N.S., Stroyuk, O.L., Dudarenko, G.V., Kuchmiy, S.Y., Pokhodenko, V.D., (2013) J. Photochem. Photobiol., A, 256, pp. 1-6
  • Matsumoto, Y., Koinuma, M., Ida, S., Hayami, S., Taniguchi, T., Hatakeyama, K., Tateishi, H., Amano, S., (2011) J. Phys. Chem. C, 115, pp. 19280-19286
  • Lahaye, R.J.W.E., Jeong, H.K., Park, C.Y., Lee, Y.H., (2009) Phys. Rev. B, 79, pp. 1254351-1254358
  • Smirnov, V.A., Shul'Ga, Y.M., Denisov, N.N., Kresova, E.I., Shul'Ga, N.Y., (2012) Nanotechnol. Russ., 7, pp. 156-163
  • Ghaderi, N., Peressi, M., (2010) J. Phys. Chem. C, 114, pp. 21625-21630
  • Wang, D., Carlson, M.T., Richardson, H.H., (2011) ACS Nano, 5, pp. 7391-7396
  • Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L., Ruoff, R.S., (2010) Nano Lett., 10, pp. 1645-1651
  • Jeong, H.-K., Lee, Y.P., Jin, M.H., Kim, E.S., Bae, J.J., Lee, Y.H., (2009) Chem. Phys. Lett., 470, pp. 255-258
  • Zhang, Y., Guo, L., Wei, S., He, Y., Xia, H., Chen, Q., Sun, H.-B., Xiao, F.-S., (2010) Nano Today, 5, pp. 15-20
  • Robel, I., Bunker, B.A., Kamat, P.V., (2005) Adv. Mater., 17, pp. 2458-2463
  • Frantsuzov, P., Kuno, M., Janko, B., Marcus, R.A., (2008) Nat. Phys., 4, pp. 519-522
  • Shul'Ga, Y.M., Martynenko, V.M., Muradyan, V.E., Baskakov, S.A., Smirnov, V.A., Gutsev, G.L., (2010) Chem. Phys. Lett., 498, pp. 287-291

Citas:

---------- APA ----------
McDonald, M.P., Eltom, A., Vietmeyer, F., Thapa, J., Morozov, Y.V., Sokolov, D.A., Hodak, J.H.,..., Kuno, M. (2013) . Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics. Nano Letters, 13(12), 5777-5784.
http://dx.doi.org/10.1021/nl402057j
---------- CHICAGO ----------
McDonald, M.P., Eltom, A., Vietmeyer, F., Thapa, J., Morozov, Y.V., Sokolov, D.A., et al. "Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics" . Nano Letters 13, no. 12 (2013) : 5777-5784.
http://dx.doi.org/10.1021/nl402057j
---------- MLA ----------
McDonald, M.P., Eltom, A., Vietmeyer, F., Thapa, J., Morozov, Y.V., Sokolov, D.A., et al. "Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics" . Nano Letters, vol. 13, no. 12, 2013, pp. 5777-5784.
http://dx.doi.org/10.1021/nl402057j
---------- VANCOUVER ----------
McDonald, M.P., Eltom, A., Vietmeyer, F., Thapa, J., Morozov, Y.V., Sokolov, D.A., et al. Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics. Nano Lett. 2013;13(12):5777-5784.
http://dx.doi.org/10.1021/nl402057j