Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Optical antennas link objects to light. Here we derive an analytical model for the interaction of dipolar transitions with radiation through nanorod antenna modes, by modeling nanorods as cavities. The model includes radiation damping, accurately describes the complete emission process, and is summarized in a phase-matching equation. We analytically discuss the quantitative evolution of antenna modes, in particular the gradual emergence of subradiant, super-radiant, and dark modes, as antennas become increasingly more bound, i.e., plasmonic. Our description is valid for the interaction of nanorods with light in general and is thus widely applicable. © 2011 American Chemical Society.

Registro:

Documento: Artículo
Título:Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes
Autor:Taminiau, T.H.; Stefani, F.D.; Van Hulst, N.F.
Filiación:ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
Departamento de Física, Instituto de Física de Buenos Aires (IFIBA, CONICET), Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
Palabras clave:dark modes; electric andmagnetic dipole emitters; metal nanorods; nanoantennas; Optical antennas; subradiance; dark modes; electric andmagnetic dipole emitters; metal nanorods; Nanoantennas; Optical antennas; Subradiances; Mathematical models; Nanorods; Optical instruments; Dipole antennas
Año:2011
Volumen:11
Número:3
Página de inicio:1020
Página de fin:1024
DOI: http://dx.doi.org/10.1021/nl103828n
Título revista:Nano Letters
Título revista abreviado:Nano Lett.
ISSN:15306984
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v11_n3_p1020_Taminiau

Referencias:

  • Greffet, J.-J., (2005) Science, 308, pp. 1561-1563
  • Taminiau, T.H., Stefani, F.D., Segerink, F.B., Van Hulst, N.F., (2008) Nat. Photonics, 2, pp. 234-237
  • Crozier, K.B., Sundaramurthy, A., Kino, G.S., Quate, C.F., (2003) J. Appl. Phys., 94, pp. 4632-4642
  • Muhlschlegel, P., Eisler, H.J., Martin, O.J.F., Hecht, B., Pohl, D.W., (2005) Science, 308, pp. 1607-1609
  • Kuhn, S., Hakanson, U., Rogobete, L., Sandoghdar, V., (2006) Phys. Rev. Lett., 97, p. 017402
  • Anger, P., Bharadwaj, P., Novotny, L., (2006) Phys. Rev. Lett., 96, p. 113002
  • Taminiau, T.H., Moerland, R.J., Segerink, F.B., Kuipers, L., Van Hulst, N.F., (2007) Nano Lett., 7, pp. 28-33
  • Ringler, M., Schwemer, A., Wunderlich, M., Nichtl, A., Kurzinger, K., Klar, T.A., Feldmann, J., (2008) Phys. Rev. Lett., 100, pp. 203002-4
  • Taminiau, T.H., Stefani, F.D., Van Hulst, N.F., (2008) Opt. Express, 16, pp. 10858-10866
  • Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., Van Hulst, N.F., (2010) Science, 329, pp. 930-933
  • Asano, S., Yamamoto, G., (1975) Appl. Opt., 14, pp. 29-49
  • Bryant, G.W., Garciadeabajo, F.J., Aizpurua, J., (2008) Nano Lett., 8, pp. 631-636
  • Schider, G., Krenn, J.R., Hohenau, A., Ditlbacher, H., Leitner, A., Aussenegg, F.R., Schaich, W.L., Boreman, G., (2003) Phys. Rev. B, 68, p. 155427
  • Ditlbacher, H., Hohenau, A., Wagner, D., Kreibig, U., Rogers, M., Hofer, F., Aussenegg, F.R., Krenn, J.R., (2005) Phys. Rev. Lett., 95, pp. 257403-4
  • Della Valle, G., Sondergaard, T., Bozhevolnyi, S.I., (2008) Opt. Express, 16, pp. 6867-6876
  • Bozhevolnyi, S.I., Sondergaard, T., (2007) Opt. Express, 15, pp. 10869-10877
  • Barnard, E.S., White, J.S., Chandran, A., Brongersma, M.L., (2008) Opt. Express, 16, pp. 16529-16537
  • Douillard, L., Charra, F., Korczak, Z., Bachelot, R., Kostcheev, S., Lerondel, G., Adam, P.-M., Royer, P., (2008) Nano Lett., 8, pp. 935-940
  • Vesseur, E.J.R., Dewaele, R., Kuttge, M., Polman, A., (2007) Nano Lett., 7, pp. 2843-2846
  • Dorfmuller, J., Vogelgesang, R., Weitz, R.T., Rockstuhl, C., Etrich, C., Pertsch, T., Lederer, F., Kern, K., (2009) Nano Lett., 9, pp. 2372-2377
  • Kolesov, R., Grotz, B., Balasubramanian, G., Stohr, R.J., Nicolet, A.A.L., Hemmer, P.R., Jelezko, F., Wrachtrup, J., (2009) Nat. Phys., 5, pp. 470-474
  • Li, Z., Hao, F., Huang, Y., Fang, Y., Nordlander, P., Xu, H., (2009) Nano Lett., 9, pp. 4383-4386
  • Chang, D.E., Sorensen, A.S., Hemmer, P.R., Lukin, M.D., (2007) Phys. Rev. B, 76, pp. 035420-26
  • Encina, E.R., Coronado, E.A., (2007) J. Phys. Chem. C, 111, pp. 16796-16801
  • Novotny, L., (2007) Phys. Rev. Lett., 98, p. 266802
  • Alu, A., Engheta, N., (2008) Phys. Rev. Lett., 101, pp. 043901-4
  • Alu, A., Engheta, N., (2008) Nat. Photonics, 2, pp. 307-310
  • Burke, P.J., Shengdong, L., Zhen, Y., (2006) IEEE Trans. Nanotechnol., 5, pp. 314-334
  • Dorfmuller, J., Vogelgesang, R., Khunsin, W., Rockstuhl, C., Etrich, C., Kern, K., (2010) Nano Lett., 10, pp. 3596-3603
  • Balanis, C.A., (2005) Antenna Theory: Analyses and Design, , 3rd ed.; John Wiley and Sons, Inc.: Hoboken, NJ
  • Gordon, R., (2009) Opt. Express, 17, pp. 18621-18629
  • Aizpurua, J., Bryant, G.W., Richter, L.J., Garcia De Abajo, F.J., Kelley, B.K., Mallouk, T., (2005) Phys. Rev. B, 71, pp. 235420-13
  • Liu, M., Lee, T.-W., Gray, S.K., Guyot-Sionnest, P., Pelton, M., (2009) Phys. Rev. Lett., 102, p. 107401
  • Hao, F., Sonnefraud, Y., Dorpe, P.V., Maier, S.A., Halas, N.J., Nordlander, P., (2008) Nano Lett., 8, pp. 3983-3988
  • Bergman, D.J., Stockman, M.I., (2003) Phys. Rev. Lett., 90, p. 027402
  • Encina, E.R., Coronado, E.A., (2008) J. Phys. Chem. C, 112, pp. 9586-9594
  • Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D., (2007) Nature, 450, pp. 402-406
  • Ghenuche, P., Cherukulappurath, S., Taminiau, T.H., Van Hulst, N.F., Quidant, R., (2008) Phys. Rev. Lett., 101, pp. 116805-4

Citas:

---------- APA ----------
Taminiau, T.H., Stefani, F.D. & Van Hulst, N.F. (2011) . Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes. Nano Letters, 11(3), 1020-1024.
http://dx.doi.org/10.1021/nl103828n
---------- CHICAGO ----------
Taminiau, T.H., Stefani, F.D., Van Hulst, N.F. "Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes" . Nano Letters 11, no. 3 (2011) : 1020-1024.
http://dx.doi.org/10.1021/nl103828n
---------- MLA ----------
Taminiau, T.H., Stefani, F.D., Van Hulst, N.F. "Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes" . Nano Letters, vol. 11, no. 3, 2011, pp. 1020-1024.
http://dx.doi.org/10.1021/nl103828n
---------- VANCOUVER ----------
Taminiau, T.H., Stefani, F.D., Van Hulst, N.F. Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes. Nano Lett. 2011;11(3):1020-1024.
http://dx.doi.org/10.1021/nl103828n