Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Several alternatives to the conventional alginate beads formulation were studied for encapsulation of invertase. Pectin was added to the alginate/enzyme solution while trehalose and β-cyclodextrin were added to the calcium gelation media. The effect of composition changes, freezing, drying methods (freeze, vacuum, or air drying), and thermal treatment were evaluated on invertase stability and its release kinetics from beads. The enzyme release mechanism from wet beads depended on pH. The addition of trehalose, pectin, and β-cyclodextrin modified the bead structure, leading in some cases to a release mechanism that included the relaxation of the polymer chains, besides Fickian diffusion. Enzyme release from vacuum-dried beads was much faster than from freeze-dried beads, probably due to their higher pore size. The inclusion of β-cyclodextrin and especially of pectin prevented enzyme activity losses during bead generation, and trehalose addition was fundamental for achieving adequate invertase protection during freezing, drying, and thermal treatment. Present results showed that several alternatives such as drying method, composition, as well as pH of the relese medium can be managed to control enzyme release. © 2011 American Chemical Society.

Registro:

Documento: Artículo
Título:Formulation and drying of alginate beads for controlled release and stabilization of invertase
Autor:Santagapita, P.R.; Mazzobre, M.F.; Buera, M.P.
Filiación:Industry Department and Organic Chemistry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
Palabras clave:Air drying; Alginate beads; Bead structures; Composition changes; Controlled release; Drying methods; Enzyme release; Fickian diffusion; Polymer chains; Release kinetics; Release mechanism; Coagulation; Enzyme activity; Freezing; Gelation; Heat treatment; Vacuum; Drying; alginate bead; alginic acid; beta cyclodextrin; beta fructofuranosidase; pectin; trehalose; unclassified drug; article; chemical composition; chemical structure; desiccation; diffusion; encapsulation; enzyme activity; enzyme kinetics; enzyme release; enzyme stability; freeze drying; freezing; gelation; heat treatment; pH; porosity; priority journal; vacuum; Alginates; beta-Cyclodextrins; beta-Fructofuranosidase; Calorimetry, Differential Scanning; Delayed-Action Preparations; Desiccation; Drug Carriers; Enzyme Stability; Freeze Drying; Gels; Hydrogen-Ion Concentration; Microscopy, Electron, Scanning; Pectins; Solubility; Trehalose
Año:2011
Volumen:12
Número:9
Página de inicio:3147
Página de fin:3155
DOI: http://dx.doi.org/10.1021/bm2009075
Título revista:Biomacromolecules
Título revista abreviado:Biomacromolecules
ISSN:15257797
CODEN:BOMAF
CAS:alginic acid, 28961-37-7, 29894-36-8, 9005-32-7, 9005-38-3; beta cyclodextrin, 7585-39-9; beta fructofuranosidase, 9001-57-4; pectin, 9000-69-5; trehalose, 99-20-7; Alginates; Delayed-Action Preparations; Drug Carriers; Gels; Pectins; Trehalose, 99-20-7; beta-Cyclodextrins; beta-Fructofuranosidase, 3.2.1.26; pectin, 9000-69-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15257797_v12_n9_p3147_Santagapita

Referencias:

  • Deladino, L., Anbinder, P.S., Navarro, A.S., Martino, M.N., (2008) Carbohydr. Polym., 71, pp. 126-134
  • Palzer, S., (2009) Trends Food Sci. Technol., 20, pp. 194-200
  • Drusch, S., Mannino, S., (2009) Trends Food Sci. Technol., 20, pp. 237-244
  • Han, J., Guenier, A.-S., Salmieri, S., Lacroix, M., (2008) J. Agric. Food Chem., 56, pp. 2528-2535
  • Gombotz, W.R., Wee, S.F., (1998) Adv. Drug Delivery Rev., 31, pp. 267-285
  • Braccini, I., Perez, I., (2001) Biomacromolecules, 2, pp. 1089-1096
  • Zhou, Z.-D., Li, G.-Y., Li, Y.-J., (2010) Int. J. Biol. Macromol., 47, pp. 21-26
  • Elnashar, M.M.M., Danial, E.N., Awad, G.E.A., (2009) Ind. Eng. Chem. Res., 48, pp. 9781-9785
  • Kim, T.H., Park, Y.H., Kim, K.J., Cho, C.S., (2003) Int. J. Pharm., 250, pp. 371-383
  • Matto, M., Husain, Q., (2009) J. Mol. Catal. B: Enzym., 57, pp. 164-170
  • Shu, S., Sun, C., Zhang, X., Wu, Z., Wang, Z., Li, C., (2010) Acta Biomater., 6, pp. 210-217
  • Endress, H.-U., Mattes, F., Norz, K., (2006) Handbook of Food Science, Technology and Engineering, 3, p. 1. , Hui, Y. H. CRC Press; Taylor and Francis Group: Boca Raton, FL
  • Crowe, L., Reid, D., Crowe, J., (1996) Biophys. J., 71, pp. 2087-2093
  • Santagapita, P.R., Gómez Brizuela, L., Mazzobre, M.F., Ramírez, H.L., Corti, H.R., Villalonga Santana, R., Buera, M.P., (2008) Biomacromolecules, 9, pp. 741-747
  • Suzuki, T., Imamura, K., Yamamoto, K., Satoh, T., Okazaki, M., (1997) J. Chem. Eng. Jpn., 30, pp. 609-613
  • Szejtli, J., (1998) Chem. Rev., 98, pp. 1743-1754
  • Villalonga, R., Cao, R., Fragoso, A., (2007) Chem. Rev., 107, pp. 3088-3116
  • Gavini, E., Rassu, G., Haukvik, T., Lanni, C., Racchi, M., Giunchedi, P., (2009) J. Drug Target., 17, pp. 168-79
  • Huang, L., Xin, J., Guo, Y., Li, J., (2010) J. Appl. Polym. Sci., 115, pp. 1371-1379
  • Kang, F., Jiang, G., Hinderliter, A., Deluca, P.P., Singh, J., (2002) Pharm. Res., 19, pp. 629-633
  • Quaglia, F., De Rosa, G., Granata, E., Ungaro, F., Fattal, E., Immacolata La Rotonda, M., (2003) J. Controlled Release, 17, pp. 267-78
  • Zhang, N., Li, J., Jiang, W., Ren, Ch., Li, J., Xin, J., Li, K., (2010) Int. J. Pharm., 393, pp. 212-218
  • Constantin, M., Fundueanua, G., Bortolottia, F., Cortesia, R., Ascenzic, P., Menegatti, E., (2004) Int. J. Pharm., 285, pp. 87-96
  • Pariot, N., Edwards-Lévy, F., Andry, M.-C., Lévy, M.-C., (2000) Int. J. Pharm., 211, pp. 19-27
  • Kotwal, S.M., Shankar, V., (2009) Biotechnol. Adv., 27, pp. 311-322
  • Schülke, N., Schmid, F.X., (1988) J. Biol. Chem., 263, pp. 8832-8837
  • Smidsrød, O., Larsen, B., Painter, T., Haug, A., (1969) Acta Chem. Scand., 23, pp. 1573-1580
  • Bradford, M.M., (1976) Anal. Biochem., 72, pp. 248-254
  • Greenspan, L., (1977) J. Res. Natl. Inst. Stand., Sect. A, 81, pp. 89-96
  • Bernfeld, P., (1955) Methods Enzymol., 1, pp. 149-158
  • Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H.S., Alvarez-Ramírez, J., Vernon-Carter, E.J., (2010) Food Res. Int., 43, pp. 111-117
  • Schebor, C., Mazzobre, M.F., Buera, M.P., (2010) Carbohydr. Res., 345, pp. 303-308
  • Katayama, D.S., Carpenter, J.F., Manning, M.C., Randolph, T.W., Setlow, P., Menard, K.P., (2008) J. Pharm. Sci., 97, pp. 1013-1024
  • Santagapita, P.R., Buera, M.P., (2008) J. Non-Cryst. Solids, 354, pp. 1760-1767
  • Hay, J.N., (1993) The Glassy State in Foods, p. 269. , Blanshard, J. M. V. Lillford, P. J. Nottingham University Press: Loughborough
  • Surana, R., Pyne, A., Suryanarayanan, R., (2004) Pharm. Res., 21, pp. 1167-1176
  • Lee, S.L., Hafeman, A.E., Debenedetti, P.G., Pethica, B.A., Moore, D.J., (2006) Ind. Eng. Chem. Res., 45, pp. 5134-5147
  • Carpenter, J., Crowe, J., (1988) Cryobiology, 25, pp. 459-470
  • Martinsen, A., Skjak-Braek, G., Smidsrød, O., (1989) Biotechnol. Bioeng., 33, pp. 79-89
  • Aral, C., Akbuga, J., (1998) Int. J. Pharm., 168, pp. 9-15
  • Ha, J., Engler, C.R., Lee, S.J., (2008) Biotechnol. Bioeng., 100, pp. 698-706
  • Liu, C.-H., Wu, J.-Y., Chang, J.-S., (2008) Bioresour. Technol., 99, pp. 1904-1910
  • Tanaka, H., Matsumara, M., Veliky, I.A., (1984) Biotechnol. Bioeng., 26, pp. 53-58
  • Coppi, G., Iannuccelli, V., (2009) Int. J. Pharm., 367, pp. 127-132
  • Pasparakis, G., Bouropoulos, N., (2006) Int. J. Pharm., 323, pp. 34-42
  • Peppas, N.A., (1985) Pharm. Acta Helvet., 60, pp. 110-111
  • Ritger, P.L., Peppas, N.A., (1987) J. Controlled Release, 5, pp. 23-36
  • Ritger, P.L., Peppas, N.A., (1987) J. Controlled Release, 5, pp. 37-42
  • Alfrey, E., Gurnee, E.F., Lloyd, W.G., (1966) J. Polym. Sci., Part C, 12, pp. 249-261
  • Llabot, J.M., Manzo, R.H., Allemandi, D.A., (2004) Int. J. Pharm., 276, pp. 59-66
  • Park, G.S., (1986) Synthetic Membranes: Science, Engineering and Applications, p. 57. , Bungay, P. M. Lonsdale, H. K. de Pinho, M. N. D. Reidel Publishing Company: Dordrecht
  • Pothakamury, U.R., Barbosa-Cánovas, G.V., (1995) Trends Food Sci. Technol., 6, pp. 397-406
  • Blandino, A., MacÍas, M., Cantero, D., (2000) Enzyme Microb. Technol., 27, pp. 319-324
  • Santagapita, P.R., Enzyme stability in systems of different molecular mobility. Impact of interactions with sugars and biopolymers and encapsulation (2010) Ph.D. Thesis, p. 194. , University of Buenos Aires, Central Library, Faculty of Exact and Natural Sciences, Buenos Aires, Argentina
  • Gómez, L., Villalonga, R., (2000) Biotechnol. Lett., 22, pp. 1191-1195
  • Jawaheer, S., White, S.F., Rughooputh, S.D.D.V., Cullen, D.C., (2002) Anal. Lett., 35, pp. 2077-2091
  • Gabellieri, E., Strambini, G.B., (2006) Biophys. J., 90, pp. 3239-3245

Citas:

---------- APA ----------
Santagapita, P.R., Mazzobre, M.F. & Buera, M.P. (2011) . Formulation and drying of alginate beads for controlled release and stabilization of invertase. Biomacromolecules, 12(9), 3147-3155.
http://dx.doi.org/10.1021/bm2009075
---------- CHICAGO ----------
Santagapita, P.R., Mazzobre, M.F., Buera, M.P. "Formulation and drying of alginate beads for controlled release and stabilization of invertase" . Biomacromolecules 12, no. 9 (2011) : 3147-3155.
http://dx.doi.org/10.1021/bm2009075
---------- MLA ----------
Santagapita, P.R., Mazzobre, M.F., Buera, M.P. "Formulation and drying of alginate beads for controlled release and stabilization of invertase" . Biomacromolecules, vol. 12, no. 9, 2011, pp. 3147-3155.
http://dx.doi.org/10.1021/bm2009075
---------- VANCOUVER ----------
Santagapita, P.R., Mazzobre, M.F., Buera, M.P. Formulation and drying of alginate beads for controlled release and stabilization of invertase. Biomacromolecules. 2011;12(9):3147-3155.
http://dx.doi.org/10.1021/bm2009075