Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This study aims to compare simulated soil moisture anomalies derived from different versions of the Global Land Data Assimilation System (GLDAS), the standardized precipitation index (SPI), and a new multisatellite surface soil moisture product over southern South America. The main motivation is the need for assessing the reliability ofGLDASvariables to be used in the characterization of soil state and its variability at the regional scale. The focus is on the southeastern part of South America (SESA), which is part of the La Plata basin, one of the largest basins of the world, where agriculture is the main source of income. The results show thatGLDASdata capture soil moisture anomalies and their variability, taking into account regional and seasonal dependencies and showing correspondence with other proxies used to characterize soil states. Over large portions of the domain, and particularly over SESA, the correlation with the SPI is very high, with the second version of GLDAS, version 2 (GLDAS-2 v2), exhibiting the highest values regardless of the season. Similar results were obtained by comparing the surface soil moisture anomalies from theGLDASland surface model (LSM) against the satellite estimations for a shorter period of time. This work documents that the precipitation dataset used to force each LSM and the choice of the LSM are of major relevance for representing soil conditions in an adequate manner. The results are considered to support the use of GLDAS as an indicator of soil moisture states and for developing new soil moisture-monitoring indices that can be applied, for example, in the context of agricultural production management. © 2015 American Meteorological Society.

Registro:

Documento: Artículo
Título:A comparison of GLDAS soil moisture anomalies against standardized precipitation index and multisatellite estimations over South America
Autor:Spennemann, P.C.; Rivera, J.A.; Celeste Saulo, A.; Penalba, O.C.
Filiación:Centro de Investigaciones del Mar y la Atmósfera, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, UMI-Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos/CNRS, Buenos Aires, Argentina
Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (CCT-Mendoza/CONICET), Parque General San Martín, Mendoza, Argentina
Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Servicio Meteorológico Nacional, Buenos Aires, Argentina
Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Palabras clave:Hydrometeorology; Land surface model; Soil moisture; South America; data assimilation; hydrometeorology; land surface; precipitation assessment; soil moisture; La Plata Basin
Año:2015
Volumen:16
Número:1
Página de inicio:158
Página de fin:171
DOI: http://dx.doi.org/10.1175/JHM-D-13-0190.1
Título revista:Journal of Hydrometeorology
Título revista abreviado:J. Hydrometeorol.
ISSN:1525755X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1525755X_v16_n1_p158_Spennemann

Referencias:

  • Adler, R.F., The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present) (2003) J. Hydrometeor., 4, pp. 1147-1167
  • Albergel, C., Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing (2013) J. Hydrometeor., 14, pp. 1259-1277
  • Andrade, F.H., Sadras, V.O., (2000) Bases para el Manejo del Maíz, el Girasol y la Soja, p. 450. , INTA
  • Balsamo, G., ERA-Interim/Land: A global land surface reanalysis based on ERA-Interim meteorological forcing (2012) ERA Rep. 13, p. 25. , http://old.ecmwf.int/publications/library/ecpublications/_pdf/era/era_report_series/RS_13.pdf, Available online at
  • Betts, A.K., Land-surface-atmosphere coupling in observations and models (2009) J. Adv. Model. Earth Syst., 1
  • Bonan, G.B., Oleson, K.W., Vertenstein, M., Levis, S., Zeng, X., Dai, Y., Dickinson, R.E., Yang, Z.-L., The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model (2002) J. Climate, 15, pp. 3123-3149
  • Chen, F., Modeling of land-surface evaporation by four schemes and comparison with FIFE observations (1996) J. Geophys. Res., 101, pp. 7251-7268
  • Dee, D.P., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system (2011) Quart. J. Roy. Meteor. Soc., 137, pp. 553-597
  • Dirmeyer, P.A., Tan, L., A multi-decadal global landsurface data set of state variables and fluxes (2001) COLA Tech. Rep. 102, p. 43. , www.iges.org/pubs/ctr_102.pdf, Available online at
  • Dirmeyer, P.A., Gao, X., Zhao, M., Guo, Z., Oki, T., Hanasaki, N., GSWP-2: Multimodel analysis and implications for our perception of the land surface (2006) Bull. Amer. Meteor. Soc., 87, pp. 1381-1397
  • Dorigo, W.A., The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements (2011) Hydrol. Earth Syst. Sci., 15, pp. 1675-1698
  • Dorigo, W.A., de Jeu, R., Chung, D., Parinussa, R., Liu, Y., Wagner, W., Fernández-prieto, D., Evaluating global trends (1988-2010) in harmonized multi-satellite soil moisture data (2012) Geophys. Res. Lett., 39, p. L18405
  • Hayes, M., Svoboda, M., Wall, N., Widhalm, M., The Lincoln Declaration on Drought Indices: Universal meteorological drought index recommended (2011) Bull. Amer. Meteor. Soc., 92, pp. 485-488
  • Houborg, R., Rodell, M., Li, B., Reichle, R., Zaitchik, B., Drought indicators based on model assimilated GRACE terrestrial water storage observations (2012) Water Resour. Res., 48, p. W07525
  • Huang, J., Van den Dool, H.M., Georgakakos, K.P., Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts (1996) J. Climate, 9, pp. 1350-1362
  • Ji, L., Peters, A.J., Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices (2003) Remote Sens. Environ., 87, pp. 85-98
  • Kanamitsu, M., Cheng-hsuan, C.-H., Schemm, J., Ebisuzaki, W., The predictability of soil moisture and near-surface temperature in hindcasts of the NCEP seasonal forecast model (2003) J. Climate, 16, pp. 510-521
  • Kato, H., Rodell, M., Beyrich, F., Cleugh, H., van Gorsel, E., Liu, H., Meyers, T.P., Sensitivity of land surface simulations to model physics, parameters, and forcings, at four CEOP sites (2007) J. Meteor. Soc. Japan, 85 A, pp. 187-204
  • Koster, R.D., Suarez, M.J., Energy and water balance calculations in the Mosaic LSM (1996), 9, p. 60. , http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf, NASA Tech. Memo. 104606, Available online at; Krepper, C.M., Zucarelli, G.V., Climatology of water excess and shortages in the La Plata basin (2010) Theor. Appl. Climatol., 102, pp. 13-27
  • Li, H., Robock, A., Liu, S., Mo, X., Viterbo, P., Evaluation of reanalysis soil moisture simulations using updated Chinese soil moisture observations (2005) J. Hydrometeor., 6, pp. 180-193
  • Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J., A simple hydrologically based model of land surface water and energy fluxes for GSMs (1994) J. Geophys. Res., 99, pp. 14415-14428
  • Liang, X., Lettenmaier, D.P., Wood, E.F., One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer Variable Infiltration Capacity model (1996) J. Geophys. Res., 101, pp. 21403-21422
  • Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M., Wagner, W., McCabe, M.F., Evans, J.P., van Dijk, A.I.J.M., Trend-preserving blending of passive and active microwave soil moisture retrievals (2012) Remote Sens. Environ., 123, pp. 280-297
  • Lloyd-hughes, B., Saunders, M.A., A drought climatology for Europe (2002) Int. J. Climatol., 22, pp. 1571-1592
  • McKee, T.B., Doesken, N.J., Kleist, J., The relationship of drought frequency and duration to time scales. Preprints (1993) 8th Conf. on Applied Climatology, pp. 179-184. , Anaheim, CA, Amer. Meteor. Soc
  • Mo, K.C., Model-based drought indices over the United States (2008) J. Hydrometeor., 9, pp. 1212-1230
  • Mueller, B., Seneviratne, S.I., Hot days induced by precipitation deficits at the global scale (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 12398-12403
  • Penalba, O.C., Rivera, J.A., Future changes in drought characteristics over southern South America projected by a CMIP5 ensemble (2013) Amer. J. Climate Change, 2, pp. 173-182
  • Penalba, O.C., Rivera, J.A., Pántano, V.C., The CLARIS LPB database: Constructing a long-term daily hydro-meteorological dataset for La Plata basin, southern South America (2014) Geosci. Data J., 1, pp. 20-29
  • Pozzi, W., Toward global drought early warning capability: Expanding international cooperation for the development of a framework for monitoring and forecasting (2013) Bull. Amer. Meteor. Soc., 94, pp. 776-785
  • Quan, X.-W., Hoerling, M.P., Lyon, B., Kumar, A., Bell, M.A., Tippett, M.K., Wang, H., Prospects for dynamical prediction of meteorological drought (2012) J. Appl. Meteor. Climatol., 51, pp. 1238-1252
  • Robock, A., Vinnikov, K.Y., Srinivasan, G., Entin, J.K., Hollinger, S.E., Speranskaya, N.A., Liu, S., Namkhai, A., The Global Soil Moisture Data Bank (2000) Bull. Amer. Meteor. Soc., 81, pp. 1281-1299
  • Robock, A., Mu, M., Vinnikov, K., Trofimova, I.V., Adamenko, T.I., Forty-five years of observed soil moisture in the Ukraine: No summer desiccation (yet) (2005) Geophys. Res. Lett., 32, p. L03401
  • Rodell, M., The Global Land Data Assimilation System (2004) Bull. Amer. Meteor. Soc., 85, pp. 381-394
  • Rui, H., Beaudoing, H., README document for the Global Land Data Assimilation System version 2 (GLDAS-2) products (2014) NASA Goddard Earth Sciences Data and Information Services Center Rep., p. 22. , ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS/README.GLDAS2.pdf, Available online at
  • Schneider, U., Becker, A., Finger, P., Meyer-christoffer, A., Rudolf, B., Ziese, M., GPCC Full Data Reanalysis version 6.0 at 1.0°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data (2011), GPCC, Offenbach, Germany; Seiler, R.A., Hayes, M., Bressan, L., Using the standardized precipitation index for flood risk monitoring (2002) Int. J. Climatol., 22, pp. 1365-1376
  • Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., Teuling, A.J., Investigating soil moisture-climate interactions in a changing climate: A review (2010) Earth Sci. Rev., 99, pp. 125-161
  • Sheffield, J., Wood, E.F., Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle (2008) J. Climate, 21, pp. 432-458
  • Sheffield, J., Goteti, G., Wood, E.F., Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling (2006) J. Climate, 19, pp. 3088-3111
  • Sims, A.P., Niyogi, D.S., Raman, S., Adopting drought indices for estimating soil moisture: A North Carolina case study (2002) Geophys. Res. Lett., 29, p. 1183
  • Szalai, S., Szinell, C., Zoboki, J., Drought monitoring in Hungary (2000) Early warning systems for drought preparedness and drought management, WMO/TD 1037, pp. 182-199
  • Tucker, C., Sellers, P., Satellite remote sensing of primary production (1986) Int. J. Remote Sens., 7, pp. 1395-1416
  • Wagner, W., Dorigo, W., de Jeu, R., Fernandez, D., Benveniste, J., Haas, E., Ertl, M., Fusion of active and passive microwave observations to create an Essential Climate Variable data record on soil moisture (2012) ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 315-321. , I-7, ISPRS
  • Standardized precipitation index user guide (2012) WMO 1090, p. 24. , www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf, Available online at
  • Xia, Y., Sheffield, J., Ek, M.B., Dong, J., Chaney, N., Wei, H., Meng, J., Wood, E.F., Evaluation of multi-model simulated soil moisture in NLDAS-2 (2014) J. Hydrol., 512, pp. 107-125
  • Zaitchik, B., Rodell, M., Olivera, F., Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme (2010) Water Resour. Res., 46, p. W06507

Citas:

---------- APA ----------
Spennemann, P.C., Rivera, J.A., Celeste Saulo, A. & Penalba, O.C. (2015) . A comparison of GLDAS soil moisture anomalies against standardized precipitation index and multisatellite estimations over South America. Journal of Hydrometeorology, 16(1), 158-171.
http://dx.doi.org/10.1175/JHM-D-13-0190.1
---------- CHICAGO ----------
Spennemann, P.C., Rivera, J.A., Celeste Saulo, A., Penalba, O.C. "A comparison of GLDAS soil moisture anomalies against standardized precipitation index and multisatellite estimations over South America" . Journal of Hydrometeorology 16, no. 1 (2015) : 158-171.
http://dx.doi.org/10.1175/JHM-D-13-0190.1
---------- MLA ----------
Spennemann, P.C., Rivera, J.A., Celeste Saulo, A., Penalba, O.C. "A comparison of GLDAS soil moisture anomalies against standardized precipitation index and multisatellite estimations over South America" . Journal of Hydrometeorology, vol. 16, no. 1, 2015, pp. 158-171.
http://dx.doi.org/10.1175/JHM-D-13-0190.1
---------- VANCOUVER ----------
Spennemann, P.C., Rivera, J.A., Celeste Saulo, A., Penalba, O.C. A comparison of GLDAS soil moisture anomalies against standardized precipitation index and multisatellite estimations over South America. J. Hydrometeorol. 2015;16(1):158-171.
http://dx.doi.org/10.1175/JHM-D-13-0190.1