Abstract:
We present a three-dimensional (3-D) interpretation of 117 long period (20-4096 s) magnetotelluric (MT) sites between 31°S and 35°S in western Argentina. They cover the most horizontal part of the Pampean shallow angle subduction of the Nazca Plate and extend south into the more steeply dipping region. Sixty-two 3-D inversions using various smoothing parameters and data misfit goals were done with a nonlinear conjugate gradient (NLCG) algorithm. A dominant feature of the mantle structure east of the horizontal slab is a conductive plume rising from near the top of the mantle transition zone at 410 km to the probable base of the lithosphere at 100 km depth. The subducted slab is known to descend to 190 km just west of the plume, but the Wadati-Benioff zone cannot be traced deeper. If the slab is extrapolated downdip it slices through the plume at 250 km depth. Removal of portions of the plume or blocking vertical current flow at 250 km depth significantly changes the predicted responses. This argues that the plume is not an artifact and that it is continuous. The simplest explanation is that there is a "wedge"-shaped slab window that has torn laterally and opens down to the east with its apex at the plume location. Stress within the slab and seismic tomography support this shape. Its northern edge likely explains why there is no deep seismicity south of 29°S. Key Points Electrically conductive plume in Argentina's asthenosphere suggests slab window Three-dimensional magnetotelluric inversion is required for data presented ©2013. American Geophysical Union. All Rights Reserved.
Registro:
| Documento: |
Artículo
|
| Título: | Electrical conductivity of the Pampean shallow subduction region of Argentina near 33 S: Evidence for a slab window |
| Autor: | Burd, A.I.; Booker, J.R.; Mackie, R.; Pomposiello, C.; Favetto, A. |
| Filiación: | Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195, United States Land General Geophysics, CGG, Milan, Italy Instituto de Geocronología y Geología Isotopíca, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
|
| Palabras clave: | Nazca flat slab subduction; slab window; three-dimensional magnetotelluric inversion; Magnetotellurics; Three dimensional; Electrical conductivity; Electrically conductive; Flat-slab subductions; Mantle transition zone; Non linear conjugate gradient (NLCG); Slab windows; Threedimensional (3-d); Wadati-Benioff Zones; Tectonics; Benioff zone; electrical conductivity; lithospheric structure; magnetotelluric method; mantle structure; Nazca plate; seismicity; slab; subduction; transition zone; Argentina; Sierras Pampeanas |
| Año: | 2013
|
| Volumen: | 14
|
| Número: | 8
|
| Página de inicio: | 3192
|
| Página de fin: | 3209
|
| DOI: |
http://dx.doi.org/10.1002/ggge.20213 |
| Título revista: | Geochemistry, Geophysics, Geosystems
|
| Título revista abreviado: | Geochem. Geophys. Geosyst.
|
| ISSN: | 15252027
|
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15252027_v14_n8_p3192_Burd |
Referencias:
- Anderson, M., Alvarado, P., Zandt, G., Beck, S., Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina (2007) Geophysical Journal International, 171 (1), pp. 419-434. , DOI 10.1111/j.1365-246X.2007.03483.x
- Bahr, K., Interpretation of the magnetotelluric impedance tensor regional induction and local telluric distortion (1988) J. Geophys., 62 (2), pp. 119-127
- Booker, J.R., The magnetotelluric phase tensor: A critical review (2013) Surv. Geophys., , doi: 10.1007/s10712-013-9234-2
- Booker, J.R., Favetto, A., Pomposiello, M.C., Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina (2004) Nature, 429 (6990), pp. 399-403. , DOI 10.1038/nature02565
- Booker, J.R., Favetto, A., Pomposiello, M.C., Xuan, F., The role of fluids in the Nazca flat slab near 31s revealed by the electrical resistivity structure (2005) 6th International Symposium on Andean Geodynamics, pp. 119-122. , Barcelona, Spain, IRD Editions Montpellier
- Cahill, T., Isacks, B., Seismicity and shape of the subducted Nazca plate (1992) J. Geophys. Res., 97, p. 17. , doi: 10.1029/92JB00493
- Caldwell, T.G., Bibby, H.M., Brown, C., The magnetotelluric phase tensor (2004) Geophysical Journal International, 158 (2), pp. 457-469. , DOI 10.1111/j.1365-246X.2004.02281.x
- Chen, P.-F., Bina, C.R., Okal, E.A., Variations in slab dip along the subducting Nazca Plate, as related to stress patterns and moment release of intermediate-depth seismicity and to surface volcanism, Geochem (2001) Geophys. Geosyst., 2 (12), p. 1054. , doi: 10.1029/2001GC000153
- Creager, K.C., Ling-Yun Chiao, Winchester Jr., J.P., Engdahl, E.R., Membrane strain rates in the subducting plate beneath South America (1995) Geophysical Research Letters, 22 (16), pp. 2321-2324. , DOI 10.1029/95GL02321
- Egbert, G., Robust multiple-station magnetotelluric data processing (1997) Geophys. J. Int., 130, pp. 475-496. , doi: 10.1111/j.1365-246X.1997.tb05663.x
- Folguera, A., Ramos, V., Collision of the Mocha fracture zone and a <4 Ma old wave of orogenic uplift in the Andes (36°-38°S) (2009) Lithosphere, 1, pp. 364-369. , doi: 10.1130/L66.1
- Gans, C.R., Beck, S.L., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M., Linkimer, L., Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: New high-resolution results (2011) Geophys. J. Int., 186, pp. 45-58. , doi: 10.1111/j.1365-246X.2011.05023.x
- Groom, R.W., Bailey, R.C., Decomposition of magnetotelluric impedance tensors in the presence of local three dimensional galvanic distortion (1989) J. Geophys. Res., 94, pp. 1913-1925. , doi: 10.1029/JB094iB02p01913
- (2010) EHB Bull, , http://www.isc.ac.uk, International Seismological Centre, Int. Seismol. Cent., Thatcham, U. K
- Jones, A.G., Distortion of magnetotelluric data: Its identification and removal (2012) The Magnetotelluric Method Theory and Practice, , edited by A. Chave and A. Jones, Cambridge Univ. Press, Cambridge
- Li, C., Van Der Hilst, R.D., Engdahl, E.R., Burdick, S., A new global model for P wave speed variations in Earth's mantle (2008) Geochem. Geophys. Geosyst., 9, pp. Q05018. , doi: 10.1029/2007GC001806
- Linkimer Abarca, L., (2011) Lithospheric Structure of the Pampean Flat Slab (Latitude 30-33S) and Northern Costa Rica (Latitude 9-11N) Subduction Zones, , PhD thesis, Univ. of Ariz., Tucson
- Mackie, R.L., Rodi, W., Watts, M.D., 3-D magnetotelluric inversion for resource exploration, in SEG 2001 Technical Program Expanded (2001) Soc. of Explor. Geophys., , San Antonio, Tex
- Pardo, M., Comte, D., Monfret, T., Seismotectonic and stress distribution in the central Chile subduction zone (2002) Journal of South American Earth Sciences, 15 (1), pp. 11-22. , DOI 10.1016/S0895-9811(02)00003-2, PII S0895981102000032, Flat-Slab Subduction in the Andes
- Pesicek, J.D., Engdahl, E.R., Thurber, C.H., Deshon, H.R., Lange, D., Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30-40°S), Chile (2012) Geophys. J. Int., 191, pp. 317-324. , doi: 10.1111/j.1365-246X.2012.05624.x
- Petiau, G., Second generation of Lead-lead chloride electrodes for geophysical applications (2000) Pure and Applied Geophysics, 157 (3), pp. 357-382
- Poe, B.T., Romano, C., Nestola, F., Smyth, J.R., Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa (2010) Phys. Earth Planet. Inter., 181, pp. 103-111. , doi: 10.1016/j.pepi.2010.05.003
- Ramos, V.A., (2009) Anatomy and Global Context of the Andes: Main Geologic Features and the Andean Orogenic Cycle, in Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision, 204, pp. 31-65. , edited by S. Kay, V. Ramos, and W. Dickinson, Geol. Soc. of Am., doi: 10.1130/2009.1204(02), Boulder
- Rodi, W., Mackie, R.L., Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion (2001) Geophysics, 66 (1), pp. 174-187
- Slancova, A., Spicak, A., Hanus, V., Vanek, J., Delimitation of domains with uniform stress in the subducted Nazca plate (2000) Tectonophysics, 319 (4), pp. 339-364. , DOI 10.1016/S0040-1951(99)00302-9, PII S0040195199003029, Seismic Structure and Stress Regime of Subduction Zones
- Smith, J.T., Booker, J.R., Rapid inversion of two- and three-dimensional magnetotelluric data (1991) J. Geophys. Res., 96, pp. 3905-3922. , doi: 10.1029/90JB02416
- Tebbens, S.F., Cande, S.C., Southeast Pacific tectonic evolution from early Oligocene to present (1997) J. Geophys. Res., 102, p. 12. , doi: 10.1029/96JB02582
- Xu, Y., Poe, B.T., Shankland, T.J., Rubie, D.C., Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions (1998) Science, 280 (5368), pp. 1415-1418. , DOI 10.1126/science.280.5368.1415
- Xu, Y., Shankland, T., Poe, T., Laboratory-based electrical conductivity in the earth's mantle (2000) J. Geophys. Res., 105, p. 27. , doi: 10.1029/2000JB900299
- Yoshino, T., Laboratory electrical conductivity measurement of mantle minerals (2010) Surv. Geophys., 31, pp. 163-206. , doi: 10.1007/s10712-009-9084-0
- Yoshino, T., Matsuzaki, T., Shatskiy, A., Katsura, T., The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle (2009) Earth Planet. Sci. Lett., 2008, pp. 291-300. , doi: 10.1016/j.epsl.2009.09.032
- Yoshino, T., Shimojuku, A., Shan, S., Guo, X., Yamazaki, D., Ito, E., Higo, Y., Funakoshi, K., Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs (2012) J. Geophys. Res., 117, pp. B08205. , doi: 10.1029/2011JB008774
Citas:
---------- APA ----------
Burd, A.I., Booker, J.R., Mackie, R., Pomposiello, C. & Favetto, A.
(2013)
. Electrical conductivity of the Pampean shallow subduction region of Argentina near 33 S: Evidence for a slab window. Geochemistry, Geophysics, Geosystems, 14(8), 3192-3209.
http://dx.doi.org/10.1002/ggge.20213---------- CHICAGO ----------
Burd, A.I., Booker, J.R., Mackie, R., Pomposiello, C., Favetto, A.
"Electrical conductivity of the Pampean shallow subduction region of Argentina near 33 S: Evidence for a slab window"
. Geochemistry, Geophysics, Geosystems 14, no. 8
(2013) : 3192-3209.
http://dx.doi.org/10.1002/ggge.20213---------- MLA ----------
Burd, A.I., Booker, J.R., Mackie, R., Pomposiello, C., Favetto, A.
"Electrical conductivity of the Pampean shallow subduction region of Argentina near 33 S: Evidence for a slab window"
. Geochemistry, Geophysics, Geosystems, vol. 14, no. 8, 2013, pp. 3192-3209.
http://dx.doi.org/10.1002/ggge.20213---------- VANCOUVER ----------
Burd, A.I., Booker, J.R., Mackie, R., Pomposiello, C., Favetto, A. Electrical conductivity of the Pampean shallow subduction region of Argentina near 33 S: Evidence for a slab window. Geochem. Geophys. Geosyst. 2013;14(8):3192-3209.
http://dx.doi.org/10.1002/ggge.20213