Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Significance: For >20 years, physiological signaling associated with the endogenous generation of hydrogen sulfide (H2S) has been of significant interest. Despite its presumed importance, the biochemical mechanisms associated with its actions have not been elucidated. Recent Advances: Recently it has been found that H2S-related or derived species are highly prevalent in mammalian systems and that these species may be responsible for some, if not the majority, of the biological actions attributed to H2S. One of the most prevalent and intriguing species are hydropersulfides (RSSH), which can be present at significant levels. Indeed, it appears that H2S and RSSH are intimately linked in biological systems and likely to be mutually inclusive. Critical Issues: The fact that H2S and polysulfides such as RSSH are present simultaneously means that the biological actions previously assigned to H2S can be instead because of the presence of RSSH (or other polysulfides). Thus, it remains possible that hydropersulfides are the biological effectors, and H2S serves, to a certain extent, as a marker for persulfides and polysulfides. Addressing this possibility will to a large extent be based on the chemistry of these species. Future Directions: Currently, it is known that persulfides possess unique and novel chemical properties that may explain their biological prevalence. However, significantly more work will be required to establish the possible physiological roles of these species. Moreover, an understanding of the regulation of their biosynthesis and degradation will become important topics in piecing together their biology. © 2017, Mary Ann Liebert, Inc. 2017.

Registro:

Documento: Artículo
Título:Chemical Biology of Hydropersulfides and Related Species: Possible Roles in Cellular Protection and Redox Signaling
Autor:Álvarez, L.; Bianco, C.L.; Toscano, J.P.; Lin, J.; Akaike, T.; Fukuto, J.M.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
Department of Chemistry, Johns Hopkins University, Baltimore, MD, United States
Department of Biology, Sonoma State University, Rohnert Park, CA, United States
Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
Department of Chemistry, Sonoma State University, Rohnert Park, CA, United States
Palabras clave:hydrogen sulfide; hydropersulfide; polysulfides; thiols; hydrogen sulfide; hydropersulfide; radical; sulfide; thiol; unclassified drug; persulfides; sulfide; cell protection; electrophilicity; heavy metal poisoning; human; nonhuman; nucleophilicity; oxidation reduction reaction; priority journal; protection; protein function; Review; animal; cell protection; chemistry; metabolism; signal transduction; Animals; Cytoprotection; Humans; Hydrogen Sulfide; Oxidation-Reduction; Signal Transduction; Sulfides
Año:2017
Volumen:27
Número:10
Página de inicio:622
Página de fin:633
DOI: http://dx.doi.org/10.1089/ars.2017.7081
Título revista:Antioxidants and Redox Signaling
Título revista abreviado:Antioxid. Redox Signal.
ISSN:15230864
CODEN:ARSIF
CAS:hydrogen sulfide, 15035-72-0, 7783-06-4; sulfide, 18496-25-8; Hydrogen Sulfide; persulfides; Sulfides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15230864_v27_n10_p622_Alvarez

Referencias:

  • Abe, K., Kimura, H., The possible role of hydrogen sulfide as an endogenous neuromodulator (1996) J Neurosci, 16, pp. 1066-1071
  • Abiko, Y., Yoshida, E., Ishii, I., Fukuto, J.M., Akaike, T., Kumagai, Y., Involvement of reactive persulfides in biological bismethylmercury sulfide formation (2015) Chem Res Toxicol, 28, pp. 1301-1306
  • Al-Magableh, M., Hart, J.L., Mechanism of vasorelaxation and role of endogenous hydrogen sulfide production in mouse aorta (2011) Naunyn-Schmied Arch Pharmacol, 383, pp. 403-413
  • Bartberger, M.D., Mannion, J.D., Powell, S.C., Stamler, J.S., Houk, K.N., Toone, E.J., S-N Dissociation energies of Snitrosothiols: On the origins of S-nitrosothiol decomposition rates (2001) J Am Chem Soc, 123, pp. 8868-8869
  • Baskin, S.I., Horowitz, A.M., Nealley, E.W., The antidotal action of sodium nitrite and sodium thiosulfate against cyanide poisoning (1992) J Clin Pharmacol, 32, pp. 368-375
  • Benson, S.W., Thermochemistry and kinetics of sulfurcontaining molecules and radicals (1978) Chem Rev, 78, pp. 23-35
  • Bianco, C.L., Chavez, T.A., Sosa, V., Saund, S., Qnn, N., Tantillo, D.J., Ichimura, A.S., Fukuto, J.M., 2016 the chemical biology of the persulfide (rssh)/ perthiyl (rss-) redox couple and possible role in biological redox signaling (2016) Free Rad Biol Med, 101, pp. 20-31
  • Buettner, G.R., The pecking order of free radicals and antioxidants: Lipid peroxidation, a-tocopherol, and ascorbate (1993) Arch Biochem Biophys, 300, pp. 535-543
  • Cavallini, D., De Marco, C., Mondobi, B., Cleavage of cystine by a pyridoxal model (1960) Arch Biochem Biophys, 87, pp. 281-288
  • Cavallini, D., Federici, G., Barboni, E., Interactions of proteins with sulfide (1970) Eur J Biochem, 14, pp. 169-174
  • J-Pr, C., Haidasz, E.A., Griesser, M., Pratt, D.A., Polysulfide-1-oxides react with peroxyl radicals as quickly as hindered phenolic antioxidants and do so by a surprising concerted homolytic substitution (2016) Chem Sci, , Epub ahead of print
  • Cianci, M., Gliubich, F., Zanotti, G., Berni, R., Specific interaction of lipoate at the active site of rhodanese (2000) Biochem Biophys Acta, 1481, pp. 103-108
  • Cipollone, R., Ascenzi, P., Visca, P., Common themes and variations in the Rhodanese superfamily (2007) IUBMB Life, 59, pp. 51-59
  • Clarkson, T.W., The toxicology of mercury (1997) Crit Rev Clin Lab Sci, 34, pp. 369-403. , 1997
  • Conrad, M., Sato, H., The oxidative stress-inducible cystine/ glutamate antiporter, system xc -: Cystine supplier and beyond (2012) Amino Acids, 42, pp. 231-246
  • Cortese-Krott, M.M., Kuhnle, G.G., Dyson, A., Fernandez, B.O., Grman, M., DuMond, J.F., Barrow, M.P., Feelisch, M., Key bioactive reaction products of the NO/H2S interaction are S/Nhybrid species, polysulfides and nitroxyl (2015) Proc Natl Acad Sci USA, 112, pp. E4651-E4660
  • Cuevasanta, E., Lange, M., Bonata, J., Coitinõ, E., Ferrer-Sueta, G., Filipovic, M., Alvarez, B., Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide (2015) J Biol Chem, 290, pp. 26866-26880
  • Dalle-Donne, I., Milzani, A., Gagliano, N., Colombo, R., Giustarini, D., Rossi, R., 2008 Molecular mechanisms and potential clinical significance of S-glutathionylation (2008) Antiox Redox Signal, 10, pp. 445-473
  • Doka, E., Pader, I., Bro, A., Johansson, K., Cheng, Q., Ballago, K., Prigge, J., Nagy, P., A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems (2016) Sci Adv, 2, p. e1500968
  • Everett, S.A., Schoneich, C., Stewart, J.H., Asmus, K.-D., Perthiyl radicals, trisulfide radical ions, and sulfate formation A combined photolysis and radiolysis study on redox processes with organic di- and trisulfides (1992) J Phys Chem, 96, pp. 306-314
  • Everett, S.A., Wardman, P., Perthiols as antioxidants: Radical-scavenging and prooxidative mechanisms (1995) Meth Enzymol, 251, pp. 55-69
  • Fina, N.J., Edwards, J.O., The alpha effect A review (1973) Int J Chem Kinet, 5, pp. 1-26
  • Fox, B., Schantz, J.-T., Haigh, R., Wood, E., Moore, P.K., Viner, N., Jpe, S., Whiteman, M., Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: Is H2S a novel cytoprotective mediator in the inflamed joint? (2012) J Cell Mol Med, 16, pp. 896-910
  • Francoleon, N.E., Carrington, S.J., Fukuto, J.M., The reaction of H2S with oxidized thiols: Generation of persulfides and Implications to H2S biology (2011) Arch Biochem Biophys, 516, pp. 146-153
  • Franklinberg, L., Enzyme therapy in cyanide poisoning: Effect of rhodanese and sulfur compounds (1980) Arch Toxicol, 45, pp. 315-323
  • Greiner, R., Palinkas, Z., Basell, K., Becher, D., Antelmann, H., Nagy, P., Dick, T.P., Polysulfides link H2S to protein thiol oxidation (2013) Antiox Redox Signal, 19, pp. 1749-1765
  • Griffith, O.H., Waggoner, A.S., Nitroxide free radicals: Spin labels for probing biomolecular structure (1969) Acc Chem Res, 2, pp. 17-24
  • Gupta, N., Balomajumder, C., Agarwal, V.K., Enzymatic mechanism and biochemistry for cyanide degradation: A review (2010) J Hazard Mat, 176, pp. 1-13
  • Hellmich, M.R., Szabo, C., Hydrogen sulfide and cancer (2015) Handb Exp Pharmacol, 230, pp. 233-241
  • Holmgren, A., Sengupta, R., The use of thiols by ribonucleotide reductase (2010) Free Radic Biol Med, 49, pp. 1617-1628
  • Ida, T., Sawa, T., Ihara, H., Tsuchiya, Y., Watanabe, Y., Kumagai, Y., Suematsu, M., Akaike, T., Reactive cysteine persulfides and Spolythiolation regulate oxidative stress and redox signaling (2014) Proc Natl Acad Sci USA, 111, pp. 7606-7611
  • Ignarro, L.J., Nitric oxide: A unique endogenous signaling molecule in vascular biology (1999) Biosci Rep, 19, pp. 51-71
  • Jacob, C., Giles, G.I., Giles, N.M., Sies, H., Sulfur and selenium: The role of oxidation state in protein structure and function (2003) Angew Chem Int Ed, 42, pp. 4742-4758
  • Jarosz, A.P., Wei, W., Gauld, J.W., Auld, J., Ozcan, F., Aslan, M., Mutus, B., Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro (2015) Free Radic Biol Med, 89, pp. 512-521
  • Jung, M., Kasamatsu, S., Matsunaga, T., Akashi, S., Ono, K., Nishimura, A., Morita, M., Akaike, T., Protein polysulfidation-dependent persulfide dioxygenase activity of ethylmalonic encephalopathy protein 1 (2016) Biochem Biophys Res Commun, 480, pp. 180-186
  • Kamoun, P., Endogenous production of hydrogen sulfide in mammals (2004) Amino Acids, 26, pp. 243-254
  • Kessler, D., Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes (2006) FEMS Microbiol Rev, 30, pp. 825-840
  • Kimura, Y., Mikamo, Y., Osumi, K., Tsugane, M., Oka, J., Kimura, H., Polysulfides are possible H2S-derived signaling molecules in rat brain (2013) FASEB J, 27, pp. 2451-2457
  • King, A.L., Lefer, D.J., Cytoprotective actions of hydrogen sulfide in ischemia-reperfusion injury (2011) Exp Physiol, 96, pp. 840-846
  • Kispal, G., Csere, P., Prohl, C., Lill, R., The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins (1999) EMBO J, 18, pp. 3981-3989
  • Koike, S., Ogasawara, Y., Shibuya, N., Kimura, H., Ishii, K., Polysulfide exerts a protective effect against cytotoxicity caused by t-butylhydroperoxide through Nrf2 signaling in neuroblastoma cells (2013) FEBS Lett, 587, pp. 3548-3555
  • Koppenol, W.H., Bounds, P.L., Signaling by sulfurcontaining molecules Quantitative aspects (2017) Arch Biochem Biophys, 617, pp. 3-8
  • Lehrke, M., Rump, S., Heidenreich, T., Wissing, J., Mendel, R.R., Bittner, F., Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis (2012) Biochem J, 441, pp. 823-832
  • Lewerenz, J., Hewitt, S.J., Huang, Y., Lambros, M., Gout, P.W., Kavilas, P.W., Massie, A., Maher, P., The cystine/ glutamate antiporter system xc- in health and disease: From molecular mechanisms to novel therapeutic opportunities (2013) Antiox Redox Signal, 18, pp. 522-555
  • Liu, Y., Dos Santos, P.C., Zhu, X., Orlando, R., Dean, D.R., Soll, D., Yuan, J., Catalytic mechanism of Sep-tRNA: CystRNA synthase (2012) J Biol Chem, 287, pp. 5426-5433
  • Madej, E., Folkes, L.K., Wardman, P., Czapski, G., Goldstein, S., Thiyl radicals react with nitric oxide to form Snitrosothiols with rates constants near diffusion-controlled limit (2008) Free Radic Biol Med, 44, pp. 2013-2018
  • Mahoney, L.R., Mendenhall, G.D., Ingold, K.U., Calorimetric and equilibrium studies on some stable nitroxide and iminoxyl radicals Approximate O-H bond dissociation energies in hydroxylamines and oximes (1973) J Am Chem Soc, 95, pp. 8610-8614
  • Mani, S., Li, H., Untereiner, A., Wu, L., Yang, G., Austin, R.C., Dickout, J.G., Wang, R., Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis (2013) Circulation, 127, pp. 2523-2534
  • Marcolongo, J.P., Morzan, U.N., Zeida, A., Scherlis, D.A., Olabe, J.A., Nitrosodisulfide [S2NO]- (perthionitrite) is a true intermediate during the cross-talk of nitrosyl and sulfide (2016) Phys Chem Chem Phys, 18, pp. 30047-30052
  • Millikin, R., Bianco, C.L., White, C., Saund, S.S., Henriquez, S., Sosa, V., Akaike, T., Fukuto, J.M., The chemical biology of protein hydropersulfides: Studies of a possible protective function of biological hydropersulfide generation (2016) Free Rad Biol Med, 97, pp. 136-147
  • Modis, K., Ju, Y., Ahmad, A., Untereiner, A.A., Altaany, Z., Wu, L., Szabo, C., Wang, R., S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics (2016) Pharm Res, 113, pp. 116-124
  • Moncada, S., Rmj, P., Higgs, E.A., Nitric oxide: Physiology, pathophysiology and pharmacology (1991) Pharmacol Rev, 43, pp. 109-142
  • Mueller, E.G., Trafficking in persulfides: Delivering sulfur in biosynthetic pathways (2006) Nat Chem Biol, 2, pp. 185-194
  • Munchberg, U., Anwar, A., Mecklenberg, S., Jacob, C., Polysulfides as biologically active ingredients of garlic (2007) Org Biomol Chem, 5, pp. 1505-1518
  • Mustafa, A.K., Gadalla, M.M., Sen, N., Kin, S., Mu, W., Gazi, S.K., Barrow, R.K., Snyder, S.H., H2S signals through protein S-sulfhydration (2009) Sci Signal, 2, pp. 1-8
  • Nagahara, N., Nagano, M., Ito, T., Suzuki, H., Redox regulation of mammalian 3-mercaptopyruvate sulfurtransferase (2015) Meth Enzymol, 554, pp. 229-254
  • Nandi, D.L., Horowitz, P.M., Westley, J., Rhodanese as a thioredoxin oxidase (2000) Int J BiochemCell Biol, 32, pp. 465-473
  • Nauser, T., Koppenol, W.H., Schoneich, C., Protein thiyl radical reactions and product formation: A kinetic simulation (2015) Free Radic Biol Med, 80, pp. 158-163
  • Ogata, K., Volini, M., Mitochondrial rhodanese: Membranebound and complexed activity (1990) J Biol Chem, 265, pp. 8087-8093
  • Ono, K., Akaike, T., Sawa, T., Kumagai, Y., Wink, D.A., Tantillo, D.J., Hobbs, A.J., Fukuto, J.M., The redox chemistry and chemical biology of H2S, hydropersulfides and derived species: Implications of their possible biological activity and utility (2014) Free Radic Biol Med, 77, pp. 82-94
  • Pagani, S., Bonomi, F., Cerletti, P., Enzymatic synthesis of the iron-sulfur cluster of spinach ferridoxin (1984) Eur J Biochem, 142, pp. 361-366
  • Parker, A.J., Kharasch, N., The scission of the sulfur-sulfur bond (1959) Chem Rev, 59, pp. 583-628
  • Paulsen, C.E., Carroll, K.S., Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery (2013) Chem Rev, 113, pp. 4633-4679
  • Ray, W.K., Zeng, G., Potters, M.B., Mansuri, A.M., Larson, T.J., Characterization of a 12-kilodalton rhodanese encoded by glpE of Escherichia coli and its interactions with thioredoxin (2000) J Bacteriol, 182, pp. 2277-2284
  • Reiffenstein, R.J., Hulbert, W.C., Roth, S.H., Toxicology of hydrogen sulfide (1992) Ann Rev Pharmacol Toxicol, 32, pp. 109-134
  • Salmeen, A., Barford, D., Functions and mechanisms of redox regulation of cysteine-based phosphatases (2005) Antiox Redox Signal, 7, pp. 560-577
  • Sato, H., Fujiwara, K., Sagara, J., Bannai, S., Induction of cysteine transport activity in mouse peritoneal macrophages by bacterial lipopolysaccharide (1995) Biochem J, 310, pp. 547-551
  • Saund, S.S., Sosa, V., Henriquez, S., Qnn, N., Bianco, C.L., Soeda, S., Millikin, R., Fukuto, J.M., The chemical biology of hydropersulfides (RSSH): Chemical stability, reactivity and redox roles (2015) Arch Biochem Biophys, 588, pp. 15-24
  • Schafer, K., Bonifacic, M., Bahnemann, D., Asmus, K.-D., Addition of oxygen to organic sulfur radicals (1978) J Phys Chem, 82, pp. 2777-2780
  • Sen, N., Paul, B.D., Gadalla, M.M., Mustafa, A.K., Sen, T., Xu, R., Kim, S., Snyder, S.H., Hydrogen sulfide-linked sulfhydration of NF-jB mediates its antiapoptotic action (2013) Mol Cell, 45, pp. 13-24
  • Sevilla, M.D., Becker, D., Yan, M., The formation and structure of the sulfoxyl radicals RSO$, RSOO$, RSO2$, and RSO2OO$ from the reaction of cysteine, glutathione and penicillamine thiyl radicals with molecular oxygen (1990) Int J Radiat Biol, 57, pp. 65-81
  • Shibata, A., Ishima, Y., Ikeda, M., Sato, H., Imafuku, T., Vtg, C., Ouchi, Y., Maruyama, T., Human serum albumen hydropersulfide is a potent reactive oxygen species scavenger in oxidative stress conditions such as chronic kidney disease (2016) Biochem Biophys Res Comm, 479, pp. 578-583
  • Stipanuk, M., Metabolism of sulfur-containing amino acids (1986) Ann Rev Nutr, 6, pp. 179-209
  • Stone, J.R., An assessment of proposed mechanisms for sensing hydrogen peroxide in mammalian systems (2004) Arch Biochem Biophys, 422, pp. 119-124
  • Stubbe, J., Van Der Donk, W.A., Protein radicals in enzyme catalysis (1998) Chem Rev, 98, pp. 705-762
  • Stubbert, D., Prysyazhna, O., Rudyk, O., Scotcher, J., Burgoyne, J.R., Eaton, P., Protein kinase G Ia oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide (2014) Hypertension, 64, pp. 1344-1351
  • Takahashi, N., Wei, F.Y., Watanabe, S., Hirayama, M., Ohuchi, Y., Fujimura, A., Kaitsuka, T., Tomizawa, K., Reactive sulfur species regulate tRNA methylthiolation and contribute to insulin secretion (2016) Nucleic Acids Res, 45, pp. 435-445
  • Toohey, J.I., Sulphane sulphur in biological systems: A possible regulatory role (1989) Biochem J, 264, pp. 625-632
  • Toohey, J.I., Sulfur signaling: Is the agent sulfide or sulfane (2011) Anal Biochem, 413, pp. 1-7
  • Wang, M., Guo, Z., Wang, S., The effect of certain conditions in the regulation of cystathionie c-lyase by exogenous hydrogen sulfide in mammalian cells (2013) Biochem Genet, 51, pp. 503-513
  • Wedmann, R., Onderka, C., Wei, S., Szijarto, I., Milijkovic, J., Mitrovic, A., Lange, M., Filipovic, M., Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation (2016) Chem Sci, 25, pp. 3414-3426
  • Wilcox, D.E., Schenk, A.D., Feldman, B.M., Xu, Y., Oxidation of zinc-binding cysteine residues in transcription factor proteins (2001) Antiox Redox Signal, 3, pp. 549-564
  • Wink, D.A., Mitchell, J.B., Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective roles of nitric oxide (1998) Free Radic Biol Med, 25, pp. 434-456
  • Winterbourn, C.C., Hampton, M.B., Thiol chemistry and specificity in redox signaling (2008) Free Radic Biol Med, 45, pp. 549-561
  • Winterbourn, C.C., Are free radicals involved in thiol-based signaling? (2015) Free Radic Biol Med, 80, pp. 164-170
  • Woycechowsky, K.J., Raines, R.T., Native disulfide bond formation in proteins (2000) Curr Opin Chem Biol, 4, pp. 533-539
  • Xie, H., Cao, Z., Enzymatic reduction of nitrate to nitrite: Insight from density functional calculations (2010) Organometallics, 29, pp. 436-441
  • Yadav, P., Vitvitsky, V., Seravalli, J., Wedmann, R., Filipovic, M., Banerjee, R., Biosynthesis and reactivity of cysteine persulfides in signaling (2016) J Am Chem Soc, 138, pp. 289-299
  • Yamanishi, T., Tuboi, S., The mechanism of the L-cystine cleavage reaction catalyzed by rat liver c-cystathionase (1981) J Biochem, 89, pp. 1913-1921
  • Yang, G., Zhao, K., Ju, Y., Mani, S., Cao, Q., Puukila, S., Khaper, N., Wang, R., Hydrogen sulfide protects against cellular senescence via S-sulfhydration of KEAP1 and activation of Nrf2 (2012) Antiox Redox Signal, 18, pp. 1906-1919
  • Yoshida, E., Toyama, T., Shinkai, Y., Sawa, T., Akaike, T., Kumagai, Y., Detoxification of methylmercury by hydrogen sulfide-producing enzyme in mammalian cells (2011) Chem Res Toxicol, 24, pp. 1633-1635
  • Yuvaniyama, P., Agar, J.N., Cash, V.L., Johnson, M.K., Dean, D.R., NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein (2000) Proc Natl Acad Sci USA, 97, pp. 599-604
  • Zhang, X., Zhang, N., Schuchmann, H.-P., Von Sonntag, C., Pulse radiolysis of 2-mercaptoethanol in oxygenated aqueous solution Generation and reactions of the thiylperoxyl radicals (1994) J Phys Chem, 98, pp. 6541-6547
  • Zhang, W., Urban, A., Mihara, H., Leimkuhler, S., Kurihara, T., Esaki, N., IscS functions as a primary sulfur-donating enzyme by interacting specifically with MoeB and MoaD in the biosynthesis of molybdopterin in Escherichia coli (2010) J Biol Chem, 285, pp. 2302-2308
  • Zhang, X., Bian, J.-S., Hydrogen sulfide: A neuromodulator and neuroprotectant in the central nervous system (2014) ACS Chem Neurosci, 5, pp. 876-883
  • Zheng, L., White, R.H., Cash, V.L., Dean, D.R., Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product (1994) Biochemistry, 33, pp. 4714-4720

Citas:

---------- APA ----------
Álvarez, L., Bianco, C.L., Toscano, J.P., Lin, J., Akaike, T. & Fukuto, J.M. (2017) . Chemical Biology of Hydropersulfides and Related Species: Possible Roles in Cellular Protection and Redox Signaling. Antioxidants and Redox Signaling, 27(10), 622-633.
http://dx.doi.org/10.1089/ars.2017.7081
---------- CHICAGO ----------
Álvarez, L., Bianco, C.L., Toscano, J.P., Lin, J., Akaike, T., Fukuto, J.M. "Chemical Biology of Hydropersulfides and Related Species: Possible Roles in Cellular Protection and Redox Signaling" . Antioxidants and Redox Signaling 27, no. 10 (2017) : 622-633.
http://dx.doi.org/10.1089/ars.2017.7081
---------- MLA ----------
Álvarez, L., Bianco, C.L., Toscano, J.P., Lin, J., Akaike, T., Fukuto, J.M. "Chemical Biology of Hydropersulfides and Related Species: Possible Roles in Cellular Protection and Redox Signaling" . Antioxidants and Redox Signaling, vol. 27, no. 10, 2017, pp. 622-633.
http://dx.doi.org/10.1089/ars.2017.7081
---------- VANCOUVER ----------
Álvarez, L., Bianco, C.L., Toscano, J.P., Lin, J., Akaike, T., Fukuto, J.M. Chemical Biology of Hydropersulfides and Related Species: Possible Roles in Cellular Protection and Redox Signaling. Antioxid. Redox Signal. 2017;27(10):622-633.
http://dx.doi.org/10.1089/ars.2017.7081