Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

p53 is a crucial transcription factor with tumor suppressive properties that elicits its function through specific target genes. It constitutes a pivotal system that integrates information received by many signaling pathways and subsequently orchestrates cell fate decisions, namely, growth-arrest, senescence, or apoptosis. Reactive oxygen species (ROS) production in cells can play a key role in signal transduction, being able to trigger different processes as cell death or cell proliferation. Sustained oxidative stress can induce genomic instability and collaborates with cancer development, whereas acute enhancement of high ROS levels leads to toxic oxidative cell damage and cell death. Here, it has been considered p53 broad potential contribution through its ability to regulate selected key cancer signaling pathways, where ROS participate as inductors or effectors of the final biological outcome. Further, we have discussed how p53 could play a role in preventing potentially harmful oxidative state and cell proliferation by pro-oncogenic pathways such as PI3K/AKT/mTOR and WNT/β-catenin or under hypoxia state. In addition, we have considered potential mechanisms by which p53 could collaborate with signal transduction pathways such as transforming growth factor-β (TGF-β) and stress-activated protein kinases (SAPK) that produce ROS, to stop or eliminate uncontrolled proliferating cells. © 2011 Mary Ann Liebert, Inc.

Registro:

Documento: Artículo
Título:Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production
Autor:Ladelfa, M.F.; Toledo, M.F.; Laiseca, J.E.; Monte, M.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:beta catenin; hypoxia inducible factor; mammalian target of rapamycin; mitogen activated protein kinase; phosphatidylinositol 3 kinase; protein kinase B; protein p53; reactive oxygen metabolite; Smad protein; stress activated protein kinase; transforming growth factor beta; Wnt protein; apoptosis; cell proliferation; human; hypoxia; metabolic regulation; nonhuman; priority journal; protein function; review; signal transduction; Apoptosis; Genomic Instability; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Mitogen-Activated Protein Kinases; Neoplasms; Oncogenes; Reactive Oxygen Species; Signal Transduction; TOR Serine-Threonine Kinases; Transforming Growth Factor beta; Tumor Suppressor Protein p53; Wnt Proteins
Año:2011
Volumen:15
Número:6
Página de inicio:1749
Página de fin:1761
DOI: http://dx.doi.org/10.1089/ars.2010.3652
Título revista:Antioxidants and Redox Signaling
Título revista abreviado:Antioxid. Redox Signal.
ISSN:15230864
CODEN:ARSIF
CAS:Smad protein, 62395-38-4; mitogen activated protein kinase, 142243-02-5; phosphatidylinositol 3 kinase, 115926-52-8; protein kinase B, 148640-14-6; stress activated protein kinase, 155215-87-5; HIF1A protein, human; Hypoxia-Inducible Factor 1, alpha Subunit; Mitogen-Activated Protein Kinases, 2.7.11.24; Reactive Oxygen Species; TOR Serine-Threonine Kinases, 2.7.1.1; Transforming Growth Factor beta; Tumor Suppressor Protein p53; Wnt Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15230864_v15_n6_p1749_Ladelfa

Referencias:

  • Adibhatla, R.M., Hatcher, J.F., Lipid oxidation and peroxidation in CNS health and disease: From molecular mechanisms to therapeutic opportunities (2010) Antioxid Redox Signal, 12, pp. 125-169
  • An, W.G., Kanekal, M., Simon, M.C., Maltepe, E., Blagosklonny, M.V., Neckers, L.M., Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha (1998) Nature, 392, pp. 405-408
  • Barker, N., Morin, P.J., Clevers, H., The Yin-Yang of TCF=beta-catenin signaling (2000) Adv Cancer Res, 77, pp. 1-24
  • Bell, E.L., Klimova, T.A., Eisenbart, J., Moraes, C.T., Murphy, M.P., Budinger, G.R.S., Chandel, N.S., The Q o site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production (2007) Journal of Cell Biology, 177 (6), pp. 1029-1036. , http://www.jcb.org/cgi/reprint/177/6/1029, DOI 10.1083/jcb.200609074
  • Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N.C., Nakano, K., Bartrons, R., Gottlieb, E., Vousden, K.H., TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis (2006) Cell, 126 (1), pp. 107-120. , DOI 10.1016/j.cell.2006.05.036, PII S0092867406007628
  • Bensaad, K., Vousden, K.H., p53: New roles in metabolism (2007) Trends in Cell Biology, 17 (6), pp. 286-291. , DOI 10.1016/j.tcb.2007.04.004, PII S0962892407000955
  • Black, D., Bird, M.A., Samson, C.M., Lyman, S., Lange, P.A., Schrum, L.W., Qian, T., Behrns, K.E., Primary cirrhotic hepatocytes resist TGFβ-induced apoptosis through a ROS-dependent mechanism (2004) Journal of Hepatology, 40 (6), pp. 942-951. , DOI 10.1016/S0168-8278(04)00128-X, PII S016882780400128X
  • Blagosklonny, M.V., An, W.G., Romanova, L.Y., Trepel, J., Fojo, T., Neckers, L., p53 inhibits hypoxia-inducible factor-stimulated transcription (1998) Journal of Biological Chemistry, 273 (20), pp. 11995-11998. , DOI 10.1074/jbc.273.20.11995
  • Blagosklonny, M.V., Giannakakou, P., Romanova, L.Y., Ryan, K.M., Vousden, K.H., Fojo, T., Inhibition of HIF-1- and wild-type p53-stimulated transcription by codon Arg175 p53 mutants with selective loss of functions (2001) Carcinogenesis, 22 (6), pp. 861-867
  • Bragado, P., Armesilla, A., Silva, A., Porras, A., Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation (2007) Apoptosis, 12 (9), pp. 1733-1742. , DOI 10.1007/s10495-007-0082-8
  • Brand, K., Aerobic glycolysis by proliferating cells: Protection against oxidative stress at the expense of energy yield (1997) Journal of Bioenergetics and Biomembranes, 29 (4), pp. 355-364. , DOI 10.1023/A:1022498714522
  • Brown, D.I., Griendling, K.K., Nox proteins in signal transduction (2009) Free Radic Biol Med, 47, pp. 1239-1253
  • Budanov, A.V., Karin, M., P53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling (2008) Cell, 134, pp. 451-460
  • Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V., Chumakov, P.M., Regeneration of Peroxiredoxins by p53-Regulated Sestrins, Homologs of Bacterial AhpD (2004) Science, 304 (5670), pp. 596-600. , DOI 10.1126/science.1095569
  • Bulavin, D.V., Saito, S., Hollander, M.C., Sakaguchi, K., Anderson, C.W., Appella, E., Fornace Jr., A.J., Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation (1999) EMBO J, 18, pp. 6845-6854
  • Burdon, R.H., Superoxide and hydrogen peroxide in relation to mammalian cell proliferation (1995) Free Radic Biol Med, 18, pp. 775-794
  • Buschmann, T., Potapova, O., Bar-Shira, A., Ivanov, V.N., Fuchs, S.Y., Henderson, S., Fried, V.A., Ronai, Z., Jun NH 2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress (2001) Molecular and Cellular Biology, 21 (8), pp. 2743-2754. , DOI 10.1128/MCB.21.8.2743-2754.2001
  • Buschmann, T., Yin, Z., Bhoumik, A., Ronai, Z., Amino-terminal-derived JNK fragment alters expression and activity of c- Jun, ATF2, and p53 and Increases H 2O 2-induced cell death (2000) Journal of Biological Chemistry, 275 (22), pp. 16590-16596. , DOI 10.1074/jbc.M910045199
  • Cadigan, K.M., Liu, Y.I., Wnt signaling: Complexity at the surface (2006) J Cell Sci, 119, pp. 395-402
  • Callapina, M., Zhou, J., Schmid, T., Kohl, R., Brune, B., NO restores HIF-1alpha hydroxylation during hypoxia: Role of reactive oxygen species (2005) Free Radic BiolMed, 39, pp. 925-936
  • Cano, C.E., Gommeaux, J., Pietri, S., Culcasi, M., Garcia, S., Seux, M., Barelier, S., Carrier, A., Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function (2009) Cancer Res, 69, pp. 219-226
  • Cantley, L.C., The phosphoinositide 3-kinase pathway (2002) Science, 296 (5573), pp. 1655-1657. , DOI 10.1126/science.296.5573.1655
  • Carmona-Cuenca, I., Roncero, C., Sancho, P., Caja, L., Fausto, N., Fernandez, M., Fabregat, I., Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity (2008) J Hepatol, 49, pp. 965-976
  • Connor, K.M., Subbaram, S., Regan, K.J., Nelson, K.K., Mazurkiewicz, J.E., Bartholomew, P.J., Aplin, A.E., Melendez, J.A., Mitochondrial H 2O 2 regulates the angiogenic phenotype via PTEN oxidation (2005) Journal of Biological Chemistry, 280 (17), pp. 16916-16924. , DOI 10.1074/jbc.M410690200
  • Cooke, M.S., Evans, M.D., Dizdaroglu, M., Lunec, J., Oxidative DNA damage: Mechanisms, mutation, and disease (2003) FASEB Journal, 17 (10), pp. 1195-1214. , DOI 10.1096/fj.02-0752rev
  • Cordenonsi, M., Dupont, S., Maretto, S., Insinga, A., Imbriano, C., Piccolo, S., Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads (2003) Cell, 113 (3), pp. 301-314. , DOI 10.1016/S0092-8674(03)00308-8
  • Cox, A.G., Winterbourn, C.C., Hampton, M.B., Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling (2009) Biochem J, 425, pp. 313-325
  • Chang, L., Karin, M., Mammalian MAP kinase signalling cascades (2001) Nature, 410 (6824), pp. 37-40. , DOI 10.1038/35065000
  • Chen, D., Li, M., Luo, J., Gu, W., Direct interactions between HIF-1α and Mdm2 modulate p53 function (2003) Journal of Biological Chemistry, 278 (16), pp. 13595-13598. , DOI 10.1074/jbc.C200694200
  • Cheng, W.-H., Zheng, X., Quimby, F.R., Roneker, C.A., Lei, X.G., Low levels of glutathione peroxidase 1 activity in selenium-deficient mouse liver affect c-Jun N-terminal kinase activation and p53 phosphorylation on Ser-15 in pro-oxidant-induced aponecrosis (2003) Biochemical Journal, 370 (3), pp. 927-934. , DOI 10.1042/BJ20021870
  • Christophorou, M.A., Martin-Zanca, D., Soucek, L., Lawlor, E.R., Brown-Swigart, L., Verschuren, E.W., Evan, G.I., Temporal dissection of p53 function in vitro and in vivo (2005) Nature Genetics, 37 (7), pp. 718-726. , DOI 10.1038/ng1572
  • Derijard, B., Hibi, M., Wu, I.-H., Barrett, T., Su, B., Deng, T., Karin, M., Davis, R.J., JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain (1994) Cell, 76 (6), pp. 1025-1037. , DOI 10.1016/0092-8674(94)90380-8
  • Desaint, S., Luriau, S., Aude, J.-C., Rousselet, G., Toledano, M.B., Mammalian antioxidant defenses are not inducible by H 2O 2 (2004) Journal of Biological Chemistry, 279 (30), pp. 31157-31163. , DOI 10.1074/jbc.M401888200
  • Dhar, S.K., Xu, Y., Chen, Y., St. Clair, D.K., Specificity protein 1-dependent p53-mediated suppression of human manganese superoxide dismutase gene expression (2006) Journal of Biological Chemistry, 281 (31), pp. 21698-21709. , http://www.jbc.org/cgi/reprint/281/31/21698, DOI 10.1074/jbc.M601083200
  • Dolado, I., Swat, A., Ajenjo, N., De Vita, G., Cuadrado, A., Nebreda, A.R., p38α MAP Kinase as a Sensor of Reactive Oxygen Species in Tumorigenesis (2007) Cancer Cell, 11 (2), pp. 191-205. , DOI 10.1016/j.ccr.2006.12.013, PII S1535610806003801
  • Downward, J., PI 3-kinase, Akt and cell survival (2004) Seminars in Cell and Developmental Biology, 15 (2), pp. 177-182. , DOI 10.1016/j.semcdb.2004.01.002
  • Drane, P., Bravard, A., Bouvard, V., May, E., Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis (2001) Oncogene, 20 (4), pp. 430-439. , DOI 10.1038/sj.onc.1204101
  • Drewelus, I., Gopfert, C., Hippel, C., Dickmanns, A., Damianitsch, K., Pieler, T., Dobbelstein, M., P63 antagonizes Wnt-induced transcription (2010) Cell Cycle, 9, pp. 580-587
  • Feng, Z., Hu, W., De Stanchina, E., Teresky, A.K., Jin, S., Lowe, S., Levine, A.J., The regulation of AMPK β1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways (2007) Cancer Research, 67 (7), pp. 3043-3053. , DOI 10.1158/0008-5472.CAN-06-4149
  • Fiscella, M., Zhang, H., Fan, S., Sakaguchi, K., Shen, S., Mercer, W.E., Vande Woude, G.F., Appella, E., Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner (1997) Proceedings of the National Academy of Sciences of the United States of America, 94 (12), pp. 6048-6053. , DOI 10.1073/pnas.94.12.6048
  • Franklin, C.C., Rosenfeld-Franklin, M.E., White, C., Kavanagh, T.J., Fausto, N., TGFbeta1-induced suppression of glutathione antioxidant defenses in hepatocytes: Caspasedependent post-translational and caspase-independent transcriptional regulatory mechanisms (2003) FASEB J, 17, pp. 1535-1537
  • Fu, W., Ma, Q., Chen, L., Li, P., Zhang, M., Ramamoorthy, S., Nawaz, Z., Bai, W., MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation (2009) J Biol Chem, 284, pp. 13987-14000
  • Fuchs, S.Y., Adler, V., Buschmann, T., Yin, Z., Wu, X., Jones, S.N., Ronai, Z., JNK targets p53 ubiquitination and degradation in nonstressed cells (1998) Genes and Development, 12 (17), pp. 2658-2663
  • Fuchs, S.Y., Adler, V., Pincus, M.R., Ronai, Z., MEKK1/JNK signaling stabilizes and activates p53 (1998) Proceedings of the National Academy of Sciences of the United States of America, 95 (18), pp. 10541-10546. , DOI 10.1073/pnas.95.18.10541
  • Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., Pelliccia, G., Pelicci, P.G., Electron transfer between cytochrome c and p66 Shc generates reactive oxygen species that trigger mitochondrial apoptosis (2005) Cell, 122 (2), pp. 221-233. , DOI 10.1016/j.cell.2005.05.011, PII S0092867405004563
  • Golden, T.R., Hinerfeld, D.A., Melov, S., Oxidative stress and aging: Beyond correlation (2002) Aging Cell, 1, pp. 117-123
  • Gommeaux, J., Cano, C., Garcia, S., Gironella, M., Pietri, S., Culcasi, M., Pebusque, M.-J., Carrier, A., Colitis and colitis-associated cancer are exacerbated in mice deficient for tumor protein 53-induced nuclear protein 1 (2007) Molecular and Cellular Biology, 27 (6), pp. 2215-2228. , DOI 10.1128/MCB.01454-06
  • Gottlieb, T.M., Martinez Leal, J.F., Seger, R., Taya, Y., Oren, M., Cross-talk between Akt, p53 and Mdm2: Possible implications for the regulation of apoptosis (2002) Oncogene, 21 (8), pp. 1299-1303. , DOI 10.1038/sj/onc/1205181
  • Graeber, T.G., Osmanian, C., Jacks, T., Housman, D.E., Koch, C.J., Lowe, S.W., Giaccia, A.J., Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours (1996) Nature, 379 (6560), pp. 88-91. , DOI 10.1038/379088a0
  • Graeber, T.G., Peterson, J.F., Tsai, M., Monica, K., Fornace Jr., A.J., Giaccia, A.J., Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by lowoxygen conditions is independent of p53 status (1994) Mol Cell Biol, 14, pp. 6264-6277
  • Guertin, D.A., Sabatini, D.M., Defining the Role of mTOR in Cancer (2007) Cancer Cell, 12 (1), pp. 9-22. , DOI 10.1016/j.ccr.2007.05.008, PII S1535610807001511
  • Hammond, E.M., Giaccia, A.J., The role of p53 in hypoxiainduced apoptosis (2005) Biochem Biophys Res Commun, 331, pp. 718-725
  • Harwood, A.J., Signal transduction in development: Holding the key (2002) Developmental Cell, 2 (4), pp. 384-385. , DOI 10.1016/S1534-5807(02)00156-9
  • Haupt, Y., Maya, R., Kazaz, A., Oren, M., Mdm2 promotes the rapid degradation of p53 (1997) Nature, 387 (6630), pp. 296-299. , DOI 10.1038/387296a0
  • Hensley, K., Floyd, R.A., Reactive oxygen species and protein oxidation in aging: A look back, a look ahead (2002) Archives of Biochemistry and Biophysics, 397 (2), pp. 377-383. , DOI 10.1006/abbi.2001.2630
  • Hermeking, H., Eick, D., Mediation of c-Myc-induced apoptosis by p53 (1994) Science, 265, pp. 2091-2093
  • Herrera, B., Alvarez, A.M., Sanchez, A., Fernandez, M., Roncero, C., Benito, M., Fabregat, I., Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor β in fetal hepatocytes (2001) FASEB Journal, 15 (3), pp. 741-751. , DOI 10.1096/fj.00-0267com
  • Herrera, B., Fernandez, M., Alvarez, A.M., Roncero, C., Benito, M., Gil, J., Fabregat, I., Activation of caspases occurs downstream from radical oxygen species production, Bcl-x L down-regulation, and early cytochrome c release in apoptosis induced by transforming growth factor β in rat fetal hepatocytes (2001) Hepatology, 34 (3), pp. 548-556. , DOI 10.1053/jhep.2001.27447
  • Herrera, B., Murillo, M.M., Alvarez-Barrientos, A., Beltran, J., Fernandez, M., Fabregat, I., Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-β in fetal rat hepatocytes (2004) Free Radical Biology and Medicine, 36 (1), pp. 16-26. , DOI 10.1016/j.freeradbiomed.2003.09.020
  • Hibi, M., Lin, A., Smeal, T., Minden, A., Karin, M., Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain (1993) Genes and Development, 7 (11), pp. 2135-2148
  • Hoogeboom, D., Burgering, B.M., Should i stay or should i go: Beta-catenin decides under stress (2009) Biochim Biophys Acta, 1796, pp. 63-74
  • Hoogeboom, D., Essers, M.A., Polderman, P.E., Voets, E., Smits, L.M., Burgering, B.M., Interaction of FOXO with betacatenin inhibits beta-catenin=T cell factor activity (2008) J Biol Chem, 283, pp. 9224-9230
  • Huang, B., Deo, D., Xia, M., Vassilev, L.T., Pharmacologic p53 activation blocks cell cycle progression but fails to induce senescence in epithelial cancer cells (2009) Mol Cancer Res, 7, pp. 1497-1509
  • Huang, C., Ma, W.Y., Maxiner, A., Sun, Y., Dong, Z., P38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389 (1999) J Biol Chem, 274, pp. 12229-12235
  • Hyun, M.S., Hur, J.M., Mun, Y.J., Kim, D., Woo, W.H., BBR induces apoptosis in HepG2 cell through an Akt-ASK1-ROSp38MAPKs- linked cascade (2010) J Cell Biochem, 109, pp. 329-338
  • Ide, T., Brown-Endres, L., Chu, K., Ongusaha, P.P., Ohtsuka, T., El-Deiry, W.S., Aaronson, S.A., Lee, S.W., GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress (2009) Mol Cell, 36, pp. 379-392
  • Inoue, T., Kato, K., Kato, H., Asanoma, K., Kuboyama, A., Ueoka, Y., Yamaguchi, S., Wake, N., Level of reactive oxygen species induced by p21Waf1=CIP1 is critical for the determination of cell fate (2009) Cancer Sci, 100, pp. 1275-1283
  • Irani, K., Xia, Y., Zweier, J.L., Sollott, S.J., Der, C.J., Fearon, E.R., Sundaresan, M., Goldschmidt-Clermont, P.J., Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts (1997) Science, 275 (5306), pp. 1649-1652. , DOI 10.1126/science.275.5306.1649
  • Jaksch, M., Paret, C., Stucka, R., Horn, N., Muller-Hocker, J., Horvath, R., Trepesch, N., Lochmuller, H., Cytochrome c oxidase deficiency due to mutations in SCO2, encoding a mitochondrial copper-binding protein, is rescued by copper in human myoblasts (2001) Human Molecular Genetics, 10 (26), pp. 3025-3035
  • Kaidi, A., Williams, A.C., Paraskeva, C., Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia (2007) Nature Cell Biology, 9 (2), pp. 210-217. , DOI 10.1038/ncb1534, PII NCB1534
  • Kamata, H., Honda, S.-I., Maeda, S., Chang, L., Hirata, H., Karin, M., Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases (2005) Cell, 120 (5), pp. 649-661. , DOI 10.1016/j.cell.2004.12.041
  • Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B., Craig, R.W., Participation of p53 protein in the cellular response to DNA damage (1991) Cancer Res, 51, pp. 6304-6311
  • Kim, J.Y., Ahn, H.J., Ryu, J.H., Suk, K., Park, J.H., BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha (2004) J Exp Med, 199, pp. 113-124
  • Kim, S.-J., Hwang, S.-G., Shin, D.Y., Kang, S.-S., Chun, J.-S., p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NF κB-dependent transcription and stabilization by serine 15 phosphorylation (2002) Journal of Biological Chemistry, 277 (36), pp. 33501-33508. , DOI 10.1074/jbc.M202862200
  • Kim, S.-J., Ju, N.-W., Oh, C.-D., Yoon, Y.-M., Song, W.K., Kim, J.-H., Yoo, Y.J., Chun, J.-S., ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status (2002) Journal of Biological Chemistry, 277 (2), pp. 1332-1339. , DOI 10.1074/jbc.M107231200
  • Kimelman, D., Xu, W., β-Catenin destruction complex: Insights and questions from a structural perspective (2006) Oncogene, 25 (57), pp. 7482-7491. , DOI 10.1038/sj.onc.1210055, PII 1210055
  • Kishi, H., Nakagawa, K., Matsumoto, M., Suga, M., Ando, M., Taya, Y., Yamaizumi, M., Osmotic shock induces G1 arrest through p53 phosphorylation at Ser33 by activated p38MAPK without phosphorylation at Ser15 and Ser20 (2001) J Biol Chem, 276, pp. 39115-39122
  • Knebel, A., Rahmsdorf, H.J., Ullrich, A., Herrlich, P., Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents (1996) EMBO Journal, 15 (19), pp. 5314-5325
  • Koch, O.R., Fusco, S., Ranieri, S.C., Maulucci, G., Palozza, P., Larocca, L.M., Cravero, A.A.M., Pani, G., Role of the life span determinant P66 shcA in ethanol-induced liver damage (2008) Laboratory Investigation, 88 (7), pp. 750-760. , DOI 10.1038/labinvest.2008.44, PII LABINVEST200844
  • Kondoh, H., Lleonart, M.E., Gil, J., Wang, J., Degan, P., Peters, G., Martinez, D., Beach, D., Glycolytic enzymes can modulate cellular life span (2005) Cancer Research, 65 (1), pp. 177-185
  • Kops, G.J., Dansen, T.B., Polderman, P.E., Saarloos, I., Wirtz, K.W., Coffer, P.J., Huang, T.T., Burgering, B.M., Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress (2002) Nature, 419, pp. 316-321
  • Kurz, E.U., Douglas, P., Lees-Miller, S.P., Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species (2004) Journal of Biological Chemistry, 279 (51), pp. 53272-53281. , DOI 10.1074/jbc.M406879200
  • Kwon, J., Lee, S.-R., Yang, K.-S., Ahn, Y., Kim, Y.J., Stadtman, E.R., Rhee, S.G., Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (47), pp. 16419-16424. , DOI 10.1073/pnas.0407396101
  • Lee, A.C., Fenster, B.E., Ito, H., Takeda, K., Bae, N.S., Hirai, T., Yu, Z.X., Finkel, T., Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species (1999) J Biol Chem, 274, pp. 7936-7940
  • Leto, T.L., Morand, S., Hurt, D., Ueyama, T., Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases (2009) Antioxid Redox Signal, 11, pp. 2607-2619
  • Levanon, D., Goldstein, R.E., Bernstein, Y., Tang, H., Goldenberg, D., Stifan, S., Paroush, Z., Groner, Y., Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors (1998) Proceedings of the National Academy of Sciences of the United States of America, 95 (20), pp. 11590-11595. , DOI 10.1073/pnas.95.20.11590
  • Levine, A.J., The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: P53 (2009) Virology, 384, pp. 285-293
  • Levine, A.J., Hu, W., Feng, Z., The P53 pathway: What questions remain to be explored? (2006) Cell Death Differ, 13, pp. 1027-1036
  • Li, H., Zhan, M., Systematic intervention of transcription for identifying network response to disease and cellular phenotypes (2006) Bioinformatics, 22 (1), pp. 96-102. , DOI 10.1093/bioinformatics/bti752
  • Li, M., Zhou, J.-Y., Ge, Y., Matherly, L.H., Wu, G.S., The Phosphatase MKP1 Is a Transcriptional Target of p53 Involved in Cell Cycle Regulation (2003) Journal of Biological Chemistry, 278 (42), pp. 41059-41068. , DOI 10.1074/jbc.M307149200
  • Liu, B., Chen, Y., St. Clair, D.K., ROS and p53: A versatile partnership (2008) Free Radic Biol Med, 44, pp. 1529-1535
  • Liu, G., Chen, X., The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis (2002) Oncogene, 21 (47), pp. 7195-7204. , DOI 10.1038/sj.onc.1205862
  • Liu, J., Stevens, J., Rote, C.A., Yost H.Joseph, Hu, Y., Neufeld, K.L., White, R.L., Matsunami, N., Siah-1 mediates a novel β-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein (2001) Molecular Cell, 7 (5), pp. 927-936. , DOI 10.1016/S1097-2765(01)00241-6
  • Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A., Jacks, T., p53 is required for radiation-induced apoptosis in mouse thymocytes (1993) Nature, 362 (6423), pp. 847-849. , DOI 10.1038/362847a0
  • Macip, S., Igarashi, M., Berggren, P., Yu, J., Lee, S.W., Aaronson, S.A., Influence of Induced Reactive Oxygen Species in p53-Mediated Cell Fate Decisions (2003) Molecular and Cellular Biology, 23 (23), pp. 8576-8585. , DOI 10.1128/MCB.23.23.8576-8585.2003
  • Matoba, S., Kang, J.-G., Patino, W.D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P.J., Hwang, P.M., p53 regulates mitochondrial respiration (2006) Science, 312 (5780), pp. 1650-1653. , DOI 10.1126/science.1126863
  • Matsuzawa, S.-I., Reed, J.C., Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses (2001) Molecular Cell, 7 (5), pp. 915-926. , DOI 10.1016/S1097-2765(01)00242-8
  • Meek, D.W., Tumour suppression by p53: A role for the DNA damage response? (2009) Nat Rev Cancer, 9, pp. 714-723
  • Mehdi, M.Z., Azar, Z.M., Srivastava, A.K., Role of receptor and nonreceptor protein tyrosine kinases in H2O2-induced PKB and ERK1/2 signaling (2007) Cell Biochemistry and Biophysics, 47 (1), pp. 1-10. , PII CBB4711
  • Mellert, H., Sykes, S.M., Murphy, M.E., McMahon, S.B., The ARF/oncogene pathway activates p53 acetylation within the DNA binding domain (2007) Cell Cycle, 6 (11), pp. 1304-1306. , http://www.landesbioscience.com/journals/cc/article/mellertCC6-11.pdf
  • Milne, D.M., Campbell, L.E., Campbell, D.G., Meek, D.W., P53 is phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, JNK1 (1995) J Biol Chem, 270, pp. 5511-5518
  • Miyashita, T., Reed, J.C., Tumor suppressor p53 is a direct transcriptional activator of the human bax gene (1995) Cell, 80, pp. 293-299
  • Moiseeva, O., Mallette, F.A., Mukhopadhyay, U.K., Moores, A., Ferbeyre, G., DNA damage signaling and p53-dependent senescence after prolonged β-interferon stimulation (2006) Molecular Biology of the Cell, 17 (4), pp. 1583-1592. , DOI 10.1091/mbc.E05-09-0858
  • Monte, M., Sacerdote De Lustig, E., Oxygen free radicals and superoxide dismutases. Biological and clinical aspects (1994) Medicina, 54 (1), pp. 61-68
  • Monte, M., Simonatto, M., Peche, L.Y., Bublik, D.R., Gobessi, S., Pierotti, M.A., Rodolfo, M., Schneider, C., MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (30), pp. 11160-11165. , DOI 10.1073/pnas.0510834103
  • Moon, R.T., Bowerman, B., Boutros, M., Perrimon, N., The promise and perils of Wnt signaling through β-catenin (2002) Science, 296 (5573), pp. 1644-1646. , DOI 10.1126/science.1071549
  • Nakano, K., Vousden, K.H., PUMA, a novel proapoptotic gene, is induced by p53 (2001) Molecular Cell, 7 (3), pp. 683-694. , DOI 10.1016/S1097-2765(01)00214-3
  • Nemoto, S., Finkel, T., Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway (2002) Science, 295 (5564), pp. 2450-2452. , DOI 10.1126/science.1069004
  • Nogueira, V., Park, Y., Chen, C.C., Xu, P.Z., Chen, M.L., Tonic, I., Unterman, T., Hay, N., Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis (2008) Cancer Cell, 14, pp. 458-470
  • Novo, E., Parola, M., Redox mechanisms in hepatic chronic wound healing and fibrogenesis (2008) Fibrogenesis Tissue Repair, 1, pp. 1-5
  • Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Tanaka, N., Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis (2000) Science, 288 (5468), pp. 1053-1058. , DOI 10.1126/science.288.5468.1053
  • Okamura, S., Arakawa, H., Tanaka, T., Nakanishi, H., Ng, C.C., Taya, Y., Monden, M., Nakamura, Y., p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis (2001) Molecular Cell, 8 (1), pp. 85-94. , DOI 10.1016/S1097-2765(01)00284-2
  • Park, H.J., Carr, J.R., Wang, Z., Nogueira, V., Hay, N., Tyner, A.L., Lau, L.F., Raychaudhuri, P., FoxM1, a critical regulator of oxidative stress during oncogenesis (2009) EMBO J, 28, pp. 2908-2918
  • Pearson, M., Carbone, R., Sebastiani, C., Cloce, M., Fagloll, M., Saito, S., Higashimoto, Y., Pellcci, P.G., PML regulates p53 acetylation and premature senescence induced by oncogenic Ras (2000) Nature, 406 (6792), pp. 207-210. , DOI 10.1038/35018127
  • Petitjean, A., Mathe, E., Kato, S., Ishioka, C., Tavtigian, S.V., Hainaut, P., Olivier, M., Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database (2007) Human Mutation, 28 (6), pp. 622-629. , DOI 10.1002/humu.20495
  • Pilarsky, C., Wenzig, M., Specht, T., Saeger, H.D., Grutzmann, R., Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data (2004) Neoplasia, 6 (6), pp. 744-750. , DOI 10.1593/neo.04277
  • Plas, D.R., Thompson, C.B., Akt-dependent transformation: There is more to growth than just surviving (2005) Oncogene, 24 (50), pp. 7435-7442. , DOI 10.1038/sj.onc.1209097, PII 1209097
  • Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W., Vogelstein, B., A model for p53-induced apoptosis (1997) Nature, 389 (6648), pp. 300-305. , DOI 10.1038/38525
  • Ravi, R., Mookerjee, B., Bhujwalla, Z.M., Sutter, C.H., Artemov, D., Zeng, Q., Dillehay, L.E., Bedi, A., Regulation of tumor angiogenesis by p53-induced degradation of hypoxia- inducible factor 1α (2000) Genes and Development, 14 (1), pp. 34-44
  • Rivera, A., Maxwell, S.A., The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway (2005) Journal of Biological Chemistry, 280 (32), pp. 29346-29354. , DOI 10.1074/jbc.M504852200
  • Ruan, K., Song, G., Ouyang, G., Role of hypoxia in the hallmarks of human cancer (2009) J Cell Biochem, 107, pp. 1053-1062
  • Ruiz-Lozano, P., Hixon, M.L., Wagner, M.W., Flores, A.I., Ikawa, S., Baldwin Jr., A.S., Chien, K.R., Gualberto, A., p53 is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression (1999) Cell Growth and Differentiation, 10 (5), pp. 295-306
  • Sablina, A.A., Budanov, A.V., Ilyinskaya, G.V., Agapova, L.S., Kravchenko, J.E., Chumakov, P.M., The antioxidant function of the p53 tumor suppressor (2005) Nature Medicine, 11 (12), pp. 1306-1313. , DOI 10.1038/nm1320
  • Sager, R., Senescence as a mode of tumor suppression (1991) Environ Health Perspect, 93, pp. 59-62
  • Sanchez-Prieto, R., Rojas, J.M., Taya, Y., Gutkind, J.S., A role for the p38 mitogen-activated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents (2000) Cancer Research, 60 (9), pp. 2464-2472
  • Sanchez-Prieto, R., Sanchez-Arevalo, V.J., Servitja, J.-M., Gutkind, J.S., Regulation of p73 by c-Abl through the p38 MAP kinase pathway (2002) Oncogene, 21 (6), pp. 974-979. , DOI 10.1038/sj/onc/1205134
  • Santoni-Rugiu, E., Jensen, M.R., Factor, V.M., Thorgeirsson, S.S., Acceleration of c-myc-induced hepatocarcinogenesis by co-expression of transforming growth factor (TGF)-α in transgenic mice is associated with TGF-β1 signaling disruption (1999) American Journal of Pathology, 154 (6), pp. 1693-1700
  • Sarbassov, D.D., Sabatini, D.M., Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex (2005) Journal of Biological Chemistry, 280 (47), pp. 39505-39509. , DOI 10.1074/jbc.M506096200
  • Schmid, T., Zhou, J., Kohl, R., Brune, B., p300 relieves p53-evoked transcriptional repression of hypoxia-inducible factor-1 (HIF-1) (2004) Biochemical Journal, 380 (1), pp. 289-295. , DOI 10.1042/BJ20031299
  • Schweikl, H., Hiller, K.A., Eckhardt, A., Bolay, C., Spagnuolo, G., Stempfl, T., Schmalz, G., Differential gene expression involved in oxidative stress response caused by triethylene glycol dimethacrylate (2008) Biomaterials, 29, pp. 1377-1387
  • Seifert, A., Taubert, H., Hombach-Klonisch, S., Fischer, B., Navarrete Santos, A., TCDD mediates inhibition of p53 and activation of ERalpha signaling in MCF-7 cells at moderate hypoxic conditions (2009) Int J Oncol, 35, pp. 417-424
  • Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., Lowe, S.W., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a) (1997) Cell, 88 (5), pp. 593-602. , DOI 10.1016/S0092-8674(00)81902-9
  • Shi, Y., Massague, J., Mechanisms of TGF-β signaling from cell membrane to the nucleus (2003) Cell, 113 (6), pp. 685-700. , DOI 10.1016/S0092-8674(03)00432-X
  • Shimada, K., Nakamura, M., Ishida, E., Kishi, M., Konishi, N., Roles of p38- and c-jun NH 2-terminal kinase-mediated pathways in 2-methoxyestradiol-induced p53 induction and apoptosis (2003) Carcinogenesis, 24 (6), pp. 1067-1075
  • Siegel, P.M., Massague, J., Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer (2003) Nat Rev Cancer, 3, pp. 807-821
  • Simon, H.-U., Haj-Yehia, A., Levi-Schaffer, F., Role of reactive oxygen species (ROS) in apoptosis induction (2000) Apoptosis, 5 (5), pp. 415-418. , DOI 10.1023/A:1009616228304
  • Stambolic, V., MacPherson, D., Sas, D., Lin, Y., Snow, B., Jang, Y., Benchimol, S., Mak, T.W., Regulation of PTEN transcription by p53 (2001) Molecular Cell, 8 (2), pp. 317-325. , DOI 10.1016/S1097-2765(01)00323-9
  • Stambolsky, P., Weisz, L., Shats, I., Klein, Y., Goldfinger, N., Oren, M., Rotter, V., Regulation of AIF expression by p53 (2006) Cell Death and Differentiation, 13 (12), pp. 2140-2149. , DOI 10.1038/sj.cdd.4401965, PII 4401965
  • Tan, M., Li, S., Swaroop, M., Guan, K., Oberley, L.W., Sun, Y., Transcriptional activation of the human glutathione peroxidase promoter by p53 (1999) J Biol Chem, 274, pp. 12061-12066
  • Terada, L.S., Specificity in reactive oxidant signaling: Think globally, act locally (2006) J Cell Biol, 174, pp. 615-623
  • Teramoto, T., Kiss, A., Thorgeirsson, S.S., Induction of p53 and Bax during TGF-β1 initiated apoptosis in rat liver epithelial cells (1998) Biochemical and Biophysical Research Communications, 251 (1), pp. 56-60. , DOI 10.1006/bbrc.1998.9411
  • Tomasini, R., Samir, A.A., Carrier, A., Isnardon, D., Cecchinelli, B., Soddu, S., Malissen, B., Dusetti, N.J., TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity (2003) Journal of Biological Chemistry, 278 (39), pp. 37722-37729. , DOI 10.1074/jbc.M301979200
  • Tomasini, R., Azizi Samir, A., Pebusque, M.-J., Calvo, E.L., Totaro, S., Dagorn, J.C., Dusetti, N.J., Iovanna, J.L., p53-dependent expression of the stress-induced protein (SIP) (2002) European Journal of Cell Biology, 81 (5), pp. 294-301
  • Tomkova, K., Belkhiri, A., El-Rifai, W., Zaika, A.I., p73 isoforms can induce T-cell factor-dependent transcription in gastrointestinal cells (2004) Cancer Research, 64 (18), pp. 6390-6393. , DOI 10.1158/0008-5472.CAN-04-2176
  • Tormos, K.V., Chandel, N.S., Inter-connection between mitochondria and HIFs (2010) J Cell Mol Med, 14, pp. 795-804
  • Trachootham, D., Lu, W., Ogasawara, M.A., Nilsa, R.D., Huang, P., Redox regulation of cell survival (2008) Antioxid Redox Signal, 10, pp. 1343-1374
  • Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., Milia, E., Pelicci, P.G., A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis (2002) Oncogene, 21 (24), pp. 3872-3878. , DOI 10.1038/sj/onc/1205513
  • Trotman, L.C., Alimonti, A., Scaglioni, P.P., Koutcher, J.A., Cordon-Cardo, C., Pandolfi, P.P., Identification of a tumour suppressor network opposing nuclear Akt function (2006) Nature, 441 (7092), pp. 523-527. , DOI 10.1038/nature04809, PII NATURE04809
  • Turrens, J.F., Mitochondrial formation of reactive oxygen species (2003) Journal of Physiology, 552 (2), pp. 335-344. , DOI 10.1113/jphysiol.2003.049478
  • Ueda, K., Arakawa, H., Nakamura, Y., Dual-specificity phospha tase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53 (2003) Oncogene, 22 (36), pp. 5586-5591. , DOI 10.1038/sj.onc.1206845
  • Ueda, Y., Hijikata, M., Takagi, S., Takada, R., Takada, S., Chiba, T., Shimotohno, K., p73β, a variant of p73, enhances Wnt/β-catenin signaling in Saos-2 cells (2001) Biochemical and Biophysical Research Communications, 283 (2), pp. 327-333. , DOI 10.1006/bbrc.2001.4788
  • Ueno, M., Masutani, H., Arai, R.J., Yamauchi, A., Hirota, K., Sakai, T., Inamoto, T., Nikaido, T., Thioredoxin-dependent redox regulation of p53-mediated p21 activation (1999) Journal of Biological Chemistry, 274 (50), pp. 35809-35815
  • Weinberg, F., Chandel, N.S., Reactive oxygen speciesdependent signaling regulates cancer (2009) Cell Mol Life Sci, 66, pp. 3663-3673
  • Wierstra, I., Alves, J., FOXM1, a typical proliferation-associated transcription factor (2007) Biological Chemistry, 388 (12), pp. 1257-1274. , DOI 10.1515/BC.2007.159
  • Wu, G.S., The functional interactions between the p53 and MAPK signaling pathways (2004) Cancer Biol Ther, 3, pp. 156-161
  • Wu, J., Jin, Y.J., Calaf, G.M., Huang, W.-L., Yin, Y., PAC1 is a direct transcription target of E2F-1 in apoptotic signaling (2007) Oncogene, 26 (45), pp. 6526-6535. , DOI 10.1038/sj.onc.1210484, PII 1210484
  • Wullschleger, S., Loewith, R., Hall, M.N., TOR signaling in growth and metabolism (2006) Cell, 124 (3), pp. 471-484. , DOI 10.1016/j.cell.2006.01.016, PII S0092867406001085
  • Wyss, M., Kaddurah-Daouk, R., Creatine and creatinine metabolism (2000) Physiological Reviews, 80 (3), pp. 1107-1213
  • Yamamura, Y., Lee, W.L., Goh, M.X., Ito, Y., Role of TAp73alpha in induction of apoptosis by transforming growth factor-beta in gastric cancer cells (2008) FEBS Lett, 582, pp. 2663-2667
  • Yang, B., O'Herrin, S.M., Wu, J., Reagan-Shaw, S., Ma, Y., Bhat, K.M.R., Gravekamp, C., Longley, B.J., MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines (2007) Cancer Research, 67 (20), pp. 9954-9962. , http://cancerres.aacrjournals.org/cgi/reprint/67/20/9954, DOI 10.1158/0008-5472.CAN-07-1478
  • Yang, J., Ahmed, A., Poon, E., Perusinghe, N., De Haven Brandon, A., Box, G., Valenti, M., Ashcroft, M., Small-molecule activation of p53 blocks hypoxiainducible factor 1alpha and vascular endothelial growth factor expression in vivo and leads to tumor cell apoptosis in normoxia and hypoxia (2009) Mol Cell Biol, 29, pp. 2243-2253
  • Yin, Y., Llu, Y.-X., Jin, Y.J., Hall, E.J., Barrett, J.C., PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression (2003) Nature, 422 (6931), pp. 527-531. , DOI 10.1038/nature01519
  • Yoon, K.-A., Nakamura, Y., Arakawa, H., Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses (2004) Journal of Human Genetics, 49 (3), pp. 134-140. , DOI 10.1007/s10038-003-0122-3
  • Yoshida, K., Liu, H., Miki, Y., Protein kinase C δ regulates Ser 46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage (2006) Journal of Biological Chemistry, 281 (9), pp. 5734-5740. , http://www.jbc.org/cgi/reprint/281/9/5734, DOI 10.1074/jbc.M512074200
  • Young, C.D., Anderson, S.M., Sugar and fat-that's where it's at: Metabolic changes in tumors (2008) Breast Cancer Res, 10, p. 202
  • Zhao, Y., Chaiswing, L., Velez, J.M., Batinic-Haberle, I., Colburn, N.H., Oberley, T.D., St. Clair, D.K., p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase (2005) Cancer Research, 65 (9), pp. 3745-3750. , DOI 10.1158/0008-5472.CAN-04-3835
  • Zhu, Y., Mao, X.O., Sun, Y., Xia, Z., Greenberg, D.A., p38 mitogen-activated protein kinase mediates hypoxic regulation of Mdm2 and p53 in neurons (2002) Journal of Biological Chemistry, 277 (25), pp. 22909-22914. , DOI 10.1074/jbc.M200042200

Citas:

---------- APA ----------
Ladelfa, M.F., Toledo, M.F., Laiseca, J.E. & Monte, M. (2011) . Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxidants and Redox Signaling, 15(6), 1749-1761.
http://dx.doi.org/10.1089/ars.2010.3652
---------- CHICAGO ----------
Ladelfa, M.F., Toledo, M.F., Laiseca, J.E., Monte, M. "Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production" . Antioxidants and Redox Signaling 15, no. 6 (2011) : 1749-1761.
http://dx.doi.org/10.1089/ars.2010.3652
---------- MLA ----------
Ladelfa, M.F., Toledo, M.F., Laiseca, J.E., Monte, M. "Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production" . Antioxidants and Redox Signaling, vol. 15, no. 6, 2011, pp. 1749-1761.
http://dx.doi.org/10.1089/ars.2010.3652
---------- VANCOUVER ----------
Ladelfa, M.F., Toledo, M.F., Laiseca, J.E., Monte, M. Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxid. Redox Signal. 2011;15(6):1749-1761.
http://dx.doi.org/10.1089/ars.2010.3652