Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8–15, 2017. © 2016 International Union of Biochemistry and Molecular Biology

Registro:

Documento: Artículo
Título:Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy
Autor:González Bardeci, N.; Angiolini, J.F.; De Rossi, M.C.; Bruno, L.; Levi, V.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN, UBA-CONICET, Argentina
IFIBA, UBA-CONICET, Argentina
Palabras clave:autocorrelation; cross-correlation; diffusion; fluorescence correlation spectroscopy; fluorescence microscopy; intracellular dynamics; cell nucleus; confocal microscopy; cytology; fluctuations technique; fluorescence correlation microscopy; fluorescence cross correlation spectroscopy; fluorescence microscopy; molecule; nonhuman; practice guideline; quantitative analysis; Review; cells; cytoplasm; fluorescence; molecular imaging; procedures; transport at the cellular level; ultrastructure; Biological Transport; Cells; Cytoplasm; Fluorescence; Microscopy, Fluorescence; Molecular Imaging
Año:2017
Volumen:69
Número:1
Página de inicio:8
Página de fin:15
DOI: http://dx.doi.org/10.1002/iub.1589
Título revista:IUBMB Life
Título revista abreviado:IUBMB Life
ISSN:15216543
CODEN:IULIF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15216543_v69_n1_p8_GonzalezBardeci

Referencias:

  • Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W., Mobility measurement by analysis of fluorescence photobleaching recovery kinetics (1976) Biophys. J., 16, pp. 1055-1069
  • Reits, E.A., Neefjes, J.J., From fixed to FRAP: measuring protein mobility and activity in living cells (2001) Nat. Cell. Biol., 3, pp. E145-E147
  • Lippincott-Schwartz, J., Altan-Bonnet, N., Patterson, G.H., Photobleaching and photoactivation: following protein dynamics in living cells (2003) Nat. Cell. Biol., Suppl, pp. S7-14. , –S
  • Cognet, L., Leduc, C., Lounis, B., Advances in live-cell single-particle tracking and dynamic super-resolution imaging (2014) Curr. Opin. Chem. Biol., 20, pp. 78-85
  • Kusumi, A., Tsunoyama, T.A., Hirosawa, K.M., Kasai, R.S., Fujiwara, T.K., Tracking single molecules at work in living cells (2014) Nat. Chem. Biol., 10, pp. 524-532
  • Bismuto, E., Gratton, E., Lamb, D.C., Dynamics of ANS binding to tuna apomyoglobin measured with fluorescence correlation spectroscopy (2001) Biophys. J., 81, pp. 3510-3521
  • Klingler, J., Friedrich, T., Site-specific interaction of thrombin and inhibitors observed by fluorescence correlation spectroscopy (1997) Biophys. J., 73, pp. 2195-2200
  • Sanchez, M.F., Dodes Traian, M.M., Levi, V., Carrer, D.C., One-photon lithography for high-quality lipid bilayer micropatterns (2015) Langmuir, 31, pp. 11943-11950
  • Sanchez, S.A., Tricerri, M.A., Gratton, E., Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo (2012) Proc Natl Acad Sci USA, 109, pp. 7314-7319
  • Izeddin, I., Recamier, V., Bosanac, L., Cisse, I.I., Boudarene, L., Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus (2014) eLife, 3
  • Larson, D.R., Zenklusen, D., Wu, B., Chao, J.A., Singer, R.H., Real-time observation of transcription initiation and elongation on an endogenous yeast gene (2011) Science, 332, pp. 475-478
  • Clark, N.M., Hinde, E., Winter, C.M., Fisher, A.P., Crosti, G., Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy (2016) eLife, 5
  • White, M.D., Angiolini, J.F., Alvarez, Y.D., Kaur, G., Zhao, Z.W., Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo (2016) Cell, 165, pp. 75-87
  • Magde, D., Elson, E., Webb, W.W., Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy (1972) Phys. Rev. Lett., 29, pp. 705-708
  • Rigler, R., Mets, U., Widengren, J., Kask, P., Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion (1993) Eur. Biophys. J., 22, pp. 169-175
  • Dean, K.M., Palmer, A.E., Advances in fluorescence labeling strategies for dynamic cellular imaging (2014) Nat. Chem. Biol., 10, pp. 512-523
  • Zhang, J., Campbell, R.E., Ting, A.Y., Tsien, R.Y., Creating new fluorescent probes for cell biology (2002) Nat. Rev. Mol. Cell Biol., 3, pp. 906-918
  • Kastrup, L., Blom, H., Eggeling, C., Hell, S.W., Fluorescence fluctuation spectroscopy in subdiffraction focal volumes (2005) Phys. Rev. Lett., 94, p. 178104
  • Levene, M.J., Korlach, J., Turner, S.W., Foquet, M., Craighead, H.G., Zero-mode waveguides for single-molecule analysis at high concentrations (2003) Science, 299, pp. 682-686
  • Kask, P., Piksarv, P., Mets, Ü., Fluorescence correlation spectroscopy in the nanosecond time range: photon antibunching in dye fluorescence (1985) Eur. Biophys. J., 12, pp. 163-166
  • Elson, E.L., 40 years of FCS: how it all began (2013) Methods Enzymol., 518, pp. 1-10
  • Berland, K.M., So, P.T., Gratton, E., Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment (1995) Biophys. J., 68, pp. 694-701
  • Elson, E.L., Brief introduction to fluorescence correlation spectroscopy (2013) Methods Enzymol., 518, pp. 11-41
  • Elson, E.L., Fluorescence correlation spectroscopy: past, present, future (2011) Biophys J., 101, pp. 2855-2870
  • Krichevsky, O., Bonnet, G., Fluorescence correlation spectroscopy: the technique and its applications (2002) Rep. Prog. Phys., 65, pp. 251-297
  • Macháň, R., Wohland, T., Recent applications of fluorescence correlation spectroscopy in live systems (2014) FEBS Lett., 588, pp. 3571-3584
  • Angiolini, J., Plachta, N., Mocskos, E., Levi, V., Exploring the dynamics of cell processes through simulations of fluorescence microscopy experiments (2015) Biophys. J., 108, pp. 2613-2618
  • Dix, J.A., Hom, E.F.Y., Verkman, A.S., Fluorescence correlation spectroscopy simulations of photophysical phenomena and molecular interactions: a molecular dynamics/Monte Carlo approach (2006) J. Phys. Chem. B, 110, pp. 1896-1906
  • Meseth, U., Wohland, T., Rigler, R., Vogel, H., Resolution of fluorescence correlation measurements (1999) Biophys. J., 76, pp. 1619-1631
  • Fitzpatrick, J.A., Lillemeier, B.F., Fluorescence correlation spectroscopy: linking molecular dynamics to biological function in vitro and in situ (2011) Curr. Opin. Struct. Biol., 21, pp. 650-660
  • Bulseco, D.A., Wolf, D.E., Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells (2007) Methods Cell Biol., 81, pp. 525-559
  • Kim, S.A., Heinze, K.G., Schwille, P., Fluorescence correlation spectroscopy in living cells (2007) Nat. Methods, 4, pp. 963-973
  • Slaughter, B.D., Li, R., Toward quantitative “in vivo biochemistry” with fluorescence fluctuation spectroscopy (2010) Mol. Biol. Cell, 21, pp. 4306-4311
  • Di Rienzo, C., Gratton, E., Beltram, F., Cardarelli, F., From fast fluorescence imaging to molecular diffusion law on live cell membranes in a commercial microscope (2014) J. Vis. Exp., (92)
  • Dertinger, T., Pacheco, V., von der Hocht, I., Hartmann, R., Gregor, I., Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements (2007) Chemphyschem, 8, pp. 433-443
  • Ries, J., Schwille, P., Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy (2006) Biophys. J., 91, pp. 1915-1924
  • Chen, H., Farkas, E.R., Webb, W.W., Chapter 1: In vivo applications of fluorescence correlation spectroscopy (2008) Methods Cell Biol., 89, pp. 3-35
  • Kohl, T., Schwille, P., Fluorescence correlation spectroscopy with autofluorescent proteins (2005) Adv. Biochem. Eng. Biotechnol., 95, pp. 107-142
  • Stasevich, T.J., Mueller, F., Michelman-Ribeiro, A., Rosales, T., Knutson, J.R., Cross-validating FRAP and FCS to quantify the impact of photobleaching on in vivo binding estimates (2010) Biophys. J., 99, pp. 3093-3101
  • Tcherniak, A., Reznik, C., Link, S., Landes, C.F., Fluorescence correlation spectroscopy: criteria for analysis in complex systems (2009) Anal. Chem., 81, pp. 746-754
  • Digman, M.A., Gratton, E., Lessons in fluctuation correlation spectroscopy (2011) Annu. Rev. Phys. Chem., 62, pp. 645-668
  • Kolin, D.L., Wiseman, P.W., Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells (2007) Cell Biochem. Biophys., 49, pp. 141-164
  • Schwille, P., Meyer-Almes, F.J., Rigler, R., Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution (1997) Biophys. J., 72, pp. 1878-1886
  • Ries, J., Schwille, P., Fluorescence correlation spectroscopy (2012) Bioessays, 34, pp. 361-368
  • Bacia, K., Kim, S.A., Schwille, P., Fluorescence cross-correlation spectroscopy in living cells (2006) Nat. Methods, 3, pp. 83-89
  • Ries, J., Schwille, P., New concepts for fluorescence correlation spectroscopy on membranes (2008) Phys. Chem. Chem. Phys., 10, pp. 3487-3497
  • Inoue, M., Digman, M.A., Cheng, M., Breusegem, S.Y., Halaihel, N., Partitioning of NaPi cotransporter in cholesterol-, sphingomyelin-, and glycosphingolipid-enriched membrane domains modulates NaPi protein diffusion, clustering, and activity (2004) J. Biol. Chem., 279, pp. 49160-49171
  • Ries, J., Chiantia, S., Schwille, P., Accurate determination of membrane dynamics with line-scan FCS (2009) Biophys. J., 96, pp. 1999-2008
  • Ruan, Q., Cheng, M.A., Levi, M., Gratton, E., Mantulin, W.W., Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS) (2004) Biophys. J., 87, pp. 1260-1267
  • Schneckenburger, H., Total internal reflection fluorescence microscopy: technical innovations and novel applications (2005) Curr. Opin. Biotechnol., 16, pp. 13-18
  • Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., Stelzer, E.H., Optical sectioning deep inside live embryos by selective plane illumination microscopy (2004) Science, 305, pp. 1007-1009
  • Guo, S.M., Bag, N., Mishra, A., Wohland, T., Bathe, M., Bayesian total internal reflection fluorescence correlation spectroscopy reveals hIAPP-induced plasma membrane domain organization in live cells (2014) Biophys. J., 106, pp. 190-200
  • Guo, S.M., He, J., Monnier, N., Sun, G., Wohland, T., Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: application to simulated and in vitro data (2012) Anal. Chem., 84, pp. 3880-3888
  • Hassler, K., Leutenegger, M., Rigler, P., Rao, R., Rigler, R., Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule (2005) Opt. Express, 13, pp. 7415-7423
  • Wohland, T., Shi, X., Sankaran, J., Stelzer, E.H., Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments (2010) Opt. Express, 18, pp. 10627-10641
  • Cardarelli, F., Lanzano, L., Gratton, E., Capturing directed molecular motion in the nuclear pore complex of live cells (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 9863-9868
  • Digman, M.A., Gratton, E., Imaging barriers to diffusion by pair correlation functions (2009) Biophys. J., 97, pp. 665-673
  • Hinde, E., Cardarelli, F., Digman, M.A., Gratton, E., In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNA-dependent molecular flow (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 16560-16565
  • Digman, M.A., Brown, C.M., Sengupta, P., Wiseman, P.W., Horwitz, A.R., Measuring fast dynamics in solutions and cells with a laser scanning microscope (2005) Biophys. J., 89, pp. 1317-1327
  • Hebert, B., Costantino, S., Wiseman, P.W., Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells (2005) Biophys. J., 88, pp. 3601-3614
  • Wiseman, P.W., Brown, C.M., Webb, D.J., Hebert, B., Johnson, N.L., Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy (2004) J. Cell Sci., 117, pp. 5521-5534
  • Digman, M.A., Dalal, R., Horwitz, A.F., Gratton, E., Mapping the number of molecules and brightness in the laser scanning microscope (2008) Biophys. J., 94, pp. 2320-2332
  • Presman, D.M., Ogara, M.F., Stortz, M., Alvarez, L.D., Pooley, J.R., Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor (2014) PLoS Biol., 12
  • Chen, Y., Muller, J.D., So, P.T., Gratton, E., The photon counting histogram in fluorescence fluctuation spectroscopy (1999) Biophys. J., 77, pp. 553-567
  • Kask, P., Palo, K., Ullmann, D., Gall, K., Fluorescence-intensity distribution analysis and its application in biomolecular detection technology (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 13756-13761
  • Palmer, A.G., Thompson, N.L., High-order fluorescence fluctuation analysis of model protein clusters (1989) Proc. Natl. Acad. Sci. USA, 86, pp. 6148-6152
  • Qian, H., Elson, E.L., Distribution of molecular aggregation by analysis of fluctuation moments (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 5479-5483
  • Chen, Y., Muller, J.D., Determining the stoichiometry of protein heterocomplexes in living cells with fluorescence fluctuation spectroscopy (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 3147-3152
  • Digman, M.A., Wiseman, P.W., Choi, C., Horwitz, A.R., Gratton, E., Stoichiometry of molecular complexes at adhesions in living cells (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 2170-2175
  • Jacobson, K., Mouritsen, O.G., Anderson, R.G., Lipid rafts: at a crossroad between cell biology and physics (2007) Nat. Cell Biol., 9, pp. 7-14
  • Miguel, L., Owen, D.M., Lim, C., Liebig, C., Evans, J., Primary human CD4+ T cells have diverse levels of membrane lipid order that correlate with their function (2011) J. Immunol., 186, pp. 3505-3516
  • Zech, T., Ejsing, C.S., Gaus, K., de Wet, B., Shevchenko, A., Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling (2009) EMBO J., 28, pp. 466-476
  • Klemm, R.W., Ejsing, C.S., Surma, M.A., Kaiser, H.J., Gerl, M.J., Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network (2009) J. Cell. Biol., 185, pp. 601-612
  • Schuck, S., Simons, K., Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane (2004) J. Cell Sci., 117, pp. 5955-5964
  • Brügger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F.T., The HIV lipidome: a raft with an unusual composition (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 2641-2646
  • Saad, J.S., Miller, J., Tai, J., Kim, A., Ghanam, R.H., Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 11364-11369
  • Takeda, M., Leser, G.P., Russell, C.J., Lamb, R.A., Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion (2003) Proc. Natl. Acad. Sci., 100, pp. 14610-14617
  • He, H.T., Marguet, D., Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy (2011) Annu. Rev. Phys. Chem., 62, pp. 417-436
  • Machan, R., Hof, M., Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy (2010) Biochim. Biophys. Acta, 1798, pp. 1377-1391
  • Korlach, J., Schwille, P., Webb, W.W., Feigenson, G.W., Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 8461-8466
  • Lenne, P.F., Wawrezinieck, L., Conchonaud, F., Wurtz, O., Boned, A., Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork (2006) EMBO J., 25, pp. 3245-3256
  • Bacia, K., Scherfeld, D., Kahya, N., Schwille, P., Fluorescence correlation spectroscopy relates rafts in model and native membranes (2004) Biophys. J., 87, pp. 1034-1043
  • Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K., Direct observation of the nanoscale dynamics of membrane lipids in a living cell (2009) Nature, 457, pp. 1159-1162
  • Honigmann, A., Mueller, V., Ta, H., Schoenle, A., Sezgin, E., Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells (2014) Nat. Commun., 5, p. 5412
  • Mueller, V., Ringemann, C., Honigmann, A., Schwarzmann, G., Medda, R., STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells (2011) Biophys. J., 101, pp. 1651-1660
  • Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G., Cremer, T., Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions (2007) Nat. Rev. Genet., 8, pp. 104-115
  • Misteli, T., Beyond the sequence: cellular organization of genome function (2007) Cell, 128, pp. 787-800
  • Weidtkamp-Peters, S., Weisshart, K., Schmiedeberg, L., Hemmerich, P., Fluorescence correlation spectroscopy to assess the mobility of nuclear proteins (2009) Methods Mol. Biol., 464, pp. 321-341
  • Baum, M., Erdel, F., Wachsmuth, M., Rippe, K., Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells (2014) Nat. Commun., 5, p. 4494
  • Di Rienzo, C., Piazza, V., Gratton, E., Beltram, F., Cardarelli, F., Probing short-range protein Brownian motion in the cytoplasm of living cells (2014) Nat. Commun., 5, p. 5891
  • Bancaud, A., Huet, S., Daigle, N., Mozziconacci, J., Beaudouin, J., Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin (2009) EMBO J., 28, pp. 3785-3798
  • Brazda, P., Szekeres, T., Bravics, B., Toth, K., Vamosi, G., Live-cell fluorescence correlation spectroscopy dissects the role of coregulator exchange and chromatin binding in retinoic acid receptor mobility (2011) J. Cell Sci., 124, pp. 3631-3642
  • Kaur, G., Costa, M.W., Nefzger, C.M., Silva, J., Fierro-Gonzalez, J.C., Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy (2013) Nat. Commun., 4, p. 1637
  • Mikuni, S., Tamura, M., Kinjo, M., Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy (2007) FEBS Lett., 581, pp. 389-393
  • Michelman-Ribeiro, A., Mazza, D., Rosales, T., Stasevich, T.J., Boukari, H., Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy (2009) Biophys. J., 97, pp. 337-346
  • Cardarelli, F., Gratton, E., In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions (2010) PLoS One, 5
  • Cardarelli, F., Lanzano, L., Gratton, E., Fluorescence correlation spectroscopy of intact nuclear pore complexes (2011) Biophys. J., 101, pp. L27-L29
  • Levi, V., Ruan, Q., Gratton, E., 3-D particle tracking in a two photon microscope. Application to the study of molecular dynamics in cells (2005) Biophys. J., 88, pp. 2919-2928
  • Wang, Y., Wang, X., Wohland, T., Sampath, K., Extracellular interactions and ligand degradation shape the nodal morphogen gradient (2016) eLife, 5
  • Yu, S.R., Burkhardt, M., Nowak, M., Ries, J., Petrasek, Z., Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules (2009) Nature, 461, pp. 533-536

Citas:

---------- APA ----------
González Bardeci, N., Angiolini, J.F., De Rossi, M.C., Bruno, L. & Levi, V. (2017) . Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy. IUBMB Life, 69(1), 8-15.
http://dx.doi.org/10.1002/iub.1589
---------- CHICAGO ----------
González Bardeci, N., Angiolini, J.F., De Rossi, M.C., Bruno, L., Levi, V. "Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy" . IUBMB Life 69, no. 1 (2017) : 8-15.
http://dx.doi.org/10.1002/iub.1589
---------- MLA ----------
González Bardeci, N., Angiolini, J.F., De Rossi, M.C., Bruno, L., Levi, V. "Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy" . IUBMB Life, vol. 69, no. 1, 2017, pp. 8-15.
http://dx.doi.org/10.1002/iub.1589
---------- VANCOUVER ----------
González Bardeci, N., Angiolini, J.F., De Rossi, M.C., Bruno, L., Levi, V. Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy. IUBMB Life. 2017;69(1):8-15.
http://dx.doi.org/10.1002/iub.1589