Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Serine/arginine-rich (SR) proteins are among the most studied splicing regulators. They constitute a family of evolutionarily conserved proteins that, apart from their initially identified and deeply studied role in splicing regulation, have been implicated in genome stability, chromatin binding, transcription elongation, mRNA stability, mRNA export and mRNA translation. Remarkably, this list of SR protein activities seems far from complete, as unexpected functions keep being unraveled. An intriguing aspect that awaits further investigation is how the multiple tasks of SR proteins are concertedly regulated within mammalian cells. In this article, we first discuss recent findings regarding the regulation of SR protein expression, activity and accessibility. We dive into recent studies describing SR protein auto-regulatory feedback loops involving different molecular mechanisms such asunproductive splicing, microRNA-mediated regulation and translational repression. In addition, we take into account another step of regulation of SR proteins, presenting new findings about a variety of post-translational modifications by proteomics approaches and how some of these modifications can regulate SR protein sub-cellular localization or stability. Towards the end, we focus in two recently revealed functions of SR proteins beyond mRNA biogenesis and metabolism, the regulation of micro-RNA processing and the regulation of small ubiquitin-like modifier (SUMO) conjugation. © 2012 IUBMB IUBMB Life, 64(10): 809-816, 2012 Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

Registro:

Documento: Artículo
Título:Regulating the regulators: Serine/arginine-rich proteins under scrutiny
Autor:Risso, G.; Pelisch, F.; Quaglino, A.; Pozzi, B.; Srebrow, A.
Filiación:Instituto de Fisiología, Biología Molecular y Neurociencias, Departamento de Fisiología, Biología Molecular y Celular, Ciudad Universitaria, Pabellõn II, Buenos Aires (C1428EHA), Argentina
Palabras clave:alternative splicing; eukaryotic gene expression; pre-mRNA processing; protein expression; protein function; messenger RNA; protein arginine methyltransferase; serine arginine rich protein; SUMO protein; acetylation; biogenesis; human; mammal cell; methylation; molecular mechanics; protein expression; protein function; protein localization; protein metabolism; protein phosphorylation; protein processing; protein stability; proteomics; review; RNA splicing; signal transduction; Alternative Splicing; Animals; Conserved Sequence; Feedback, Physiological; Gene Expression Regulation; Humans; MicroRNAs; Nuclear Proteins; Protein Biosynthesis; Protein Processing, Post-Translational; RNA, Messenger; RNA-Binding Proteins; Signal Transduction; Small Ubiquitin-Related Modifier Proteins; Eukaryota; Mammalia
Año:2012
Volumen:64
Número:10
Página de inicio:809
Página de fin:816
DOI: http://dx.doi.org/10.1002/iub.1075
Título revista:IUBMB Life
Título revista abreviado:IUBMB Life
ISSN:15216543
CODEN:IULIF
CAS:MicroRNAs; Nuclear Proteins; RNA, Messenger; RNA-Binding Proteins; Small Ubiquitin-Related Modifier Proteins; serine-arginine-rich splicing proteins, 170974-22-8
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15216543_v64_n10_p809_Risso

Referencias:

  • Wahl, M.C., Will, C.L., Luhrmann, R., The spliceosome: Design principles of a dynamic RNP machine (2009) Cell, 136, pp. 701-718
  • McManus, C.J., Graveley, B.R., RNA structure and the mechanisms of alternative splicing (2011) Curr. Opin. Genet. Dev., 21, pp. 373-379
  • Black, D.L., Mechanisms of alternative pre-messenger RNA splicing (2003) Annu. Rev. Biochem., 72, pp. 291-336
  • Busch, A., Hertel, K.J., Evolution of SR protein and hnRNP splicing regulatory factors (2012) Interdiscip. Rev. RNA, 3, pp. 1-12
  • Han, S.P., Tang, Y.H., Smith, R., Functional diversity of the hnRNPs: Past, present and perspectives (2010) Biochem. J., 430, pp. 379-392
  • Chaudhury, A., Chander, P., Howe, P.H., Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: Focus on hnRNP E1's multifunctional regulatory roles (2010) RNA, 16, pp. 1449-1462
  • Graveley, B.R., Sorting out the complexity of SR protein functions (2000) RNA, 6, pp. 1197-1211
  • Xiao, S.H., Manley, J.L., Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2 (1998) EMBO J., 17, pp. 6359-6367
  • Michlewski, G., Sanford, J.R., Caceres, J.F., The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1 (2008) Mol. Cell, 30, pp. 179-189
  • Pelisch, F., Gerez, J., Druker, J., Schor, I.E., Munoz, M.J., The serine/arginine-rich protein SF2/ASF regulates protein sumoylation (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 16119-16124
  • Munoz, M.J., De La Mata, M., Kornblihtt, A.R., The carboxy terminal domain of RNA polymerase II and alternative splicing (2010) Trends Biochem. Sci., 35, pp. 497-504
  • Blaustein, M., Pelisch, F., Tanos, T., Munoz, M.J., Wengier, D., Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT (2005) Nat. Struct. Mol. Biol., 12, pp. 1037-1044
  • Rodriguez-Navarro, S., Hurt, E., Linking gene regulation to mRNA production and export (2011) Curr. Opin. Cell Biol., 23, pp. 302-309
  • Long, J.C., Caceres, J.F., The SR protein family of splicing factors: Master regulators of gene expression (2009) Biochem. J., 417, pp. 15-27
  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Lysine acetylation targets protein complexes and co-regulates major cellular functions (2009) Science, 325, pp. 834-840
  • Wagner, S.A., Beli, P., Weinert, B.T., Nielsen, M.L., Cox, J., A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles (2011) Mol. Cell. Proteom., 10, pp. M111. , et
  • Lareau, L.F., Inada, M., Green, R.E., Wengrod, J.C., Brenner, S.E., Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements (2007) Nature, 446, pp. 926-929
  • Ni, J.Z., Grate, L., Donohue, J.P., Preston, C., Nobida, N., Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay (2007) Genes Dev., 21, pp. 708-718
  • Meseguer, S., Mudduluru, G., Escamilla, J.M., Allgayer, H., Barettino, D., MicroRNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF) (2011) J. Biol. Chem., 286, pp. 4150-4164
  • Wu, H., Sun, S., Tu, K., Gao, Y., Xie, B., A splicing-independent function of SF2/ASF in microRNA processing (2010) Mol. Cell, 38, pp. 67-77
  • Ong, S.E., Mittler, G., Mann, M., Identifying and quantifying in vivo methylation sites by heavy methyl SILAC (2004) Nat. Methods, 1, pp. 119-126
  • Sinha, R., Allemand, E., Zhang, Z., Karni, R., Myers, M.P., Arginine methylation controls the subcellular localization and functions of the oncoprotein splicing factor SF2/ASF (2010) Mol. Cell. Biol., 30, pp. 2762-2774
  • Ma, K., He, Y., Zhang, H., Fei, Q., Niu, D., DNA methylation-regulated miR-193a-3p dictates resistance of hepatocellular carcinoma to 5-fluorouracil via repression of SRSF2 expression (2012) J. Biol. Chem., 287, pp. 5639-5649
  • Yoshino, H., Enokida, H., Chiyomaru, T., Tatarano, S., Hidaka, H., Tumor suppressive microRNA-1 mediated novel apoptosis pathways through direct inhibition of splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) in bladder cancer (2012) Biochem. Biophys. Res. Commun., 417, pp. 588-593
  • Lareau, L.F., Brooks, A.N., Soergel, D.A., Meng, Q., Brenner, S.E., The coupling of alternative splicing and nonsense-mediated mRNA decay (2007) Adv. Exp. Med. Biol., 623, pp. 190-211
  • Thiery, J.P., Sleeman, J.P., Complex networks orchestrate epithelial-mesenchymal transitions (2006) Nat. Rev. Mol. Cell Biol., 7, pp. 131-142
  • Ghigna, C., Giordano, S., Shen, H., Benvenuto, F., Castiglioni, F., Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene (2005) Mol. Cell, 20, pp. 881-890
  • Valacca, C., Bonomi, S., Buratti, E., Pedrotti, S., Baralle, F.E., Sam68 regulates EMT through alternative splicing-activated nonsense-mediated mRNA decay of the SF2/ASF proto-oncogene (2010) J. Cell Biol., 191, pp. 87-99
  • Sun, S., Zhang, Z., Sinha, R., Karni, R., Krainer, A.R., SF2/ASF autoregulation involves multiple layers of post-transcriptional and translational control (2010) Nat. Struct. Mol. Biol., 17, pp. 306-312
  • Karni, R., De Stanchina, E., Lowe, S.W., Sinha, R., Mu, D., The gene encoding the splicing factor SF2/ASF is a proto-oncogene (2007) Nat. Struct. Mol. Biol., 14, pp. 185-193
  • Anczukow, O., Rosenberg, A.Z., Akerman, M., Das, S., Zhan, L., The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation (2012) Nat. Struct. Mol. Biol., 19, pp. 220-228
  • Li, X., Wang, J., Manley, J.L., Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation (2005) Genes Dev., 19, pp. 2705-2714
  • Li, X., Manley, J.L., Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability (2005) Cell, 122, pp. 365-378
  • Laserna, E.J., Valero, M.L., Sanz, L., Del Pino, M.M., Calvete, J.J., Proteomic analysis of phosphorylated nuclear proteins underscores novel roles for rapid actions of retinoic acid in the regulation of mRNA splicing and translation (2009) Mol. Endocrinol., 23, pp. 1799-1814
  • Stamm, S., Regulation of alternative splicing by reversible protein phosphorylation (2008) J. Biol. Chem., 283, pp. 1223-1227
  • Blaustein, M., Pelisch, F., Srebrow, A., Signals, pathways and splicing regulation (2007) Int. J. Biochem. Cell Biol., 39, pp. 2031-2048
  • David, C.J., Manley, J.L., Alternative pre-mRNA splicing regulation in cancer: Pathways and programs unhinged (2010) Genes Dev., 24, pp. 2343-2364
  • Heyd, F., Lynch, K.W., Degrade, move, regroup: Signaling control of splicing proteins (2011) Trends Biochem. Sci., 36, pp. 397-404
  • Edmond, V., Moysan, E., Khochbin, S., Matthias, P., Brambilla, C., Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin (2011) EMBO J., 30, pp. 510-523
  • Liu, Q., Dreyfuss, G., In vivo and in vitro arginine methylation of RNA-binding proteins (1995) Mol. Cell. Biol., 15, pp. 2800-2808
  • McBride, A.E., Silver, P.A., State of the arg: Protein methylation at arginine comes of age (2001) Cell, 106, pp. 5-8
  • Bressan, G.C., Moraes, E.C., Manfiolli, A.O., Kuniyoshi, T.M., Passos, D.O., Arginine methylation analysis of the splicing-associated SR protein SFRS9/SRP30C (2009) Cell. Mol. Biol. Lett., 14, pp. 657-669
  • Shen, H., Kan, J.L., Green, M.R., Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly (2004) Mol. Cell, 13, pp. 367-376
  • Yu, M.C., Bachand, F., McBride, A.E., Komili, S., Casolari, J.M., Arginine methyltransferase affects interactions and recruitment of mRNA processing and export factors (2004) Genes Dev., 18, pp. 2024-2035
  • Chen, Y.C., Milliman, E.J., Goulet, I., Cote, J., Jackson, C.A., Protein arginine methylation facilitates cotranscriptional recruitment of pre-mRNA splicing factors (2010) Mol. Cell. Biol., 30, pp. 5245-5256
  • Sanchez, S.E., Petrillo, E., Beckwith, E.J., Zhang, X., Rugnone, M.L., A methyl transferase links the circadian clock to the regulation of alternative splicing (2010) Nature, 468, pp. 112-116
  • Finley, D., Recognition and processing of ubiquitin-protein conjugates by the proteasome (2009) Annu. Rev. Biochem., 78, pp. 477-513
  • Song, E.J., Werner, S.L., Neubauer, J., Stegmeier, F., Aspden, J., The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome (2010) Genes Dev., 24, pp. 1434-1447
  • Xu, G., Paige, J.S., Jaffrey, S.R., Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling (2010) Nat. Biotechnol., 28, pp. 868-873
  • Vertegaal, A.C., Ogg, S.C., Jaffray, E., Rodriguez, M.S., Hay, R.T., A proteomic study of SUMO-2 target proteins (2004) J. Biol. Chem., 279, pp. 33791-33798
  • Blomster, H.A., Hietakangas, V., Wu, J., Kouvonen, P., Hautaniemi, S., Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites (2009) Mol. Cell. Proteom., 8, pp. 1382-1390
  • Desterro, J.M., Keegan, L.P., Jaffray, E., Hay, R.T., O'Connell, M.A., SUMO-1 modification alters ADAR1 editing activity (2005) Mol. Biol. Cell, 16, pp. 5115-5126
  • Vethantham, V., Rao, N., Manley, J.L., Sumoylation modulates the assembly and activity of the pre-mRNA 3' processing complex (2007) Mol. Cell. Biol., 27, pp. 8848-8858
  • Tripathi, V., Ellis, J.D., Shen, Z., Song, D.Y., Pan, Q., The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation (2010) Mol. Cell, 39, pp. 925-938
  • Yang, L., Lin, C., Liu, W., Zhang, J., Ohgi, K.A., NcRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs (2011) Cell, 147, pp. 773-788
  • Metz, A., Soret, J., Vourc'H, C., Tazi, J., Jolly, C., A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules (2004) J. Cell Sci., 117, pp. 4551-4558
  • Biamonti, G., Caceres, J.F., Cellular stress and RNA splicing (2009) Trends Biochem. Sci., 34, pp. 146-153
  • Sanford, J.R., Wang, X., Mort, M., Vanduyn, N., Cooper, D.N., Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts (2009) Genome Res., 19, pp. 381-394
  • Twyffels, L., Gueydan, C., Kruys, V., Shuttling SR proteins: More than splicing factors (2011) FEBS J., 278, pp. 3246-3255
  • Michlewski, G., Caceres, J.F., Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis (2010) Nat. Struct. Mol. Biol., 17, pp. 1011-1018
  • Werner, A., Flotho, A., Melchior, F., The RanBP2/RanGAP1(*)SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase (2012) Mol. Cell, 46, pp. 287-298
  • Rappsilber, J., Ryder, U., Lamond, A.I., Mann, M., Large-scale proteomic analysis of the human spliceosome (2002) Genome Res., 12, pp. 1231-1245
  • Loomis, R.J., Naoe, Y., Parker, J.B., Savic, V., Bozovsky, M.R., Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation (2009) Mol. Cell, 33, pp. 450-461

Citas:

---------- APA ----------
Risso, G., Pelisch, F., Quaglino, A., Pozzi, B. & Srebrow, A. (2012) . Regulating the regulators: Serine/arginine-rich proteins under scrutiny. IUBMB Life, 64(10), 809-816.
http://dx.doi.org/10.1002/iub.1075
---------- CHICAGO ----------
Risso, G., Pelisch, F., Quaglino, A., Pozzi, B., Srebrow, A. "Regulating the regulators: Serine/arginine-rich proteins under scrutiny" . IUBMB Life 64, no. 10 (2012) : 809-816.
http://dx.doi.org/10.1002/iub.1075
---------- MLA ----------
Risso, G., Pelisch, F., Quaglino, A., Pozzi, B., Srebrow, A. "Regulating the regulators: Serine/arginine-rich proteins under scrutiny" . IUBMB Life, vol. 64, no. 10, 2012, pp. 809-816.
http://dx.doi.org/10.1002/iub.1075
---------- VANCOUVER ----------
Risso, G., Pelisch, F., Quaglino, A., Pozzi, B., Srebrow, A. Regulating the regulators: Serine/arginine-rich proteins under scrutiny. IUBMB Life. 2012;64(10):809-816.
http://dx.doi.org/10.1002/iub.1075