Artículo

Astort, F.; Repetto, E.M.; Martínez Calejman, C.; Cipelli, J.M.; Sánchez, R.; Di Gruccio, J.M.; Mercau, M.; Pignataro, O.P.; Arias, P.; Cymeryng, C.B. "High glucose-induced changes in steroid production in adrenal cells" (2009) Diabetes/Metabolism Research and Reviews. 25(5):477-486
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background: Increased activity of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in enhanced adrenocorticotropin (ACTH) and serum glucocorticoid levels, has been described in patients with diabetes mellitus and in animal models of this disease; however, altered steroid production by adrenocortical cells could result from local changes triggered by increased reactive oxygen species (ROS), induced in turn by chronic hyperglycaemia. Experiments were designed (1) to analyse the effects of incubating murine adrenocortical cells in hyperglycaemic media on the generation of oxidative stress, on steroid synthesis and on its modulation by the activity of haeme oxygenase (HO); and (2) to evaluate the effect of antioxidant treatment on these parameters. Methods: Y1 cells were incubated for 7 days with either normal or high glucose (HG, 30 mmol/L) concentrations, with or without antioxidant treatment. Parameters of oxidative stress and expression levels of haeme oxygenase-1 (HO-1), nitrite levels, L-arginine uptake and progesterone production were determined. Results: HG augmented ROS and lipoperoxide production, decreasing glutathione (GSH) levels and increasing antioxidant enzymes and HO-1 expression. Basal progesterone production was reduced, while a higher response to ACTH was observed in HG-treated cells. The increase in HO-1 expression and the effects on basal steroid production were abolished by antioxidant treatment. Inhibition of HO activity increased basal and ACTH-stimulated steroid release. Similar results were obtained by HO-1 gene silencing while the opposite effect was observed in Y1 cells overexpressing HO-1. Conclusions?: HG induces oxidative stress and affects steroid production in adrenal cells; the involvement of HO activity in the modulation of steroidogenesis in Y1 cells is postulated. Copyright © 2009 John Wiley & Sons, Ltd.

Registro:

Documento: Artículo
Título:High glucose-induced changes in steroid production in adrenal cells
Autor:Astort, F.; Repetto, E.M.; Martínez Calejman, C.; Cipelli, J.M.; Sánchez, R.; Di Gruccio, J.M.; Mercau, M.; Pignataro, O.P.; Arias, P.; Cymeryng, C.B.
Filiación:Departamento de Bioquímica Humana, Universidad de Buenos Aires, CEFYBO (CONICET), Paraguay 2155 5o, (C1121ABG) Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, V. de Obligado 2490, (C1428ADN) Buenos Aires, Argentina
Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 7o, (C1121ABG) Buenos Aires, Argentina
Palabras clave:Adrenocortical cells; Antioxidants; Haeme oxygenase-1; High glucose; Nitric oxide; Oxidative stress; Steroids; arginine; corticotropin; glucose; glutathione; heme oxygenase 1; lipid peroxide; nitrite; progesterone; reactive oxygen metabolite; arginine; glucose; heme oxygenase; nitrite; progesterone; reactive oxygen metabolite; thiobarbituric acid reactive substance; adrenal cortex cell; animal cell; article; controlled study; enzyme activity; enzyme inhibition; gene silencing; hormone response; hyperglycemia; mouse; nonhuman; nucleotide sequence; oxidative stress; priority journal; progesterone synthesis; protein expression; rat; steroidogenesis; analysis of variance; animal; cell clone; cell culture; comparative study; cytology; dose response; genetic transfection; human; metabolism; nonparametric test; oxidative stress; physiology; zona fasciculata; Analysis of Variance; Animals; Arginine; Cells, Cultured; Clone Cells; Dose-Response Relationship, Drug; Glucose; Heme Oxygenase (Decyclizing); Humans; Hyperglycemia; Mice; Nitrites; Oxidative Stress; Progesterone; Rats; Reactive Oxygen Species; Statistics, Nonparametric; Thiobarbituric Acid Reactive Substances; Transfection; Zona Fasciculata
Año:2009
Volumen:25
Número:5
Página de inicio:477
Página de fin:486
DOI: http://dx.doi.org/10.1002/dmrr.978
Título revista:Diabetes/Metabolism Research and Reviews
Título revista abreviado:Diabetes Metab. Res. Rev.
ISSN:15207552
CODEN:DMRRF
CAS:arginine, 1119-34-2, 15595-35-4, 7004-12-8, 74-79-3; corticotropin, 11136-52-0, 9002-60-2, 9061-27-2; glucose, 50-99-7, 84778-64-3; glutathione, 70-18-8; nitrite, 14797-65-0; progesterone, 57-83-0; heme oxygenase, 9059-22-7; Arginine, 74-79-3; Glucose, 50-99-7; Heme Oxygenase (Decyclizing), 1.14.99.3; Nitrites; Progesterone, 57-83-0; Reactive Oxygen Species; Thiobarbituric Acid Reactive Substances
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15207552_v25_n5_p477_Astort

Referencias:

  • Brownlee, M., The pathobiology of diabetic complications: A unifying mechanism (2005) Diabetes, 54 (6), pp. 1615-1625. , DOI 10.2337/diabetes.54.6.1615
  • King, G.L., Loeken, M.R., Hyperglycemia-induced oxidative stress in diabetic complications (2004) Histochemistry and Cell Biology, 122 (4), pp. 333-338. , DOI 10.1007/s00418-004-0678-9
  • Allen, D.A., Yaqoob, M.M., Harwood, S.M., Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications (2005) J Nutr Biochem, 16 (12), pp. 705-713
  • Palmeira, C.M., Rolo, A.P., Berthiaume, J., Bjork, J.A., Wallace, K.B., Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis (2007) Toxicology and Applied Pharmacology, 225 (2), pp. 214-220. , DOI 10.1016/j.taap.2007.07.015, PII S0041008X07003341
  • Yu, B.P., Cellular defenses against damage from reactive oxygen species (1994) Physiol Rev, 74 (1), pp. 139-162
  • Ryter, S.W., Tyrrell, R.M., The heme synthesis and degradation pathways: Role in oxidant sensitivity. Heme oxygenase has both pro- And antioxidant properties (2000) Free Radic Biol Med, 28 (2), pp. 289-309
  • Jonas, J.C., Guiot, Y., Rahier, J., Henquin, J.C., Haeme-oxygenase 1 expression in rat pancreatic beta cells is stimulated by supraphysiological glucose concentrations and by cyclic AMP (2003) Diabetologia, 46 (9), pp. 1234-1244. , DOI 10.1007/s00125-003-1174-9
  • Elouil, H., Cardozo, A.K., Eizirik, D.L., Henquin, J.C., Jonas, J.C., High glucose and hydrogen peroxide increase c-Myc and haeme-oxygenase 1 mRNA levels in rat pancreatic islets without activating NFkB (2005) Diabetologia, 48 (3), pp. 496-505. , DOI 10.1007/s00125-004-1664-4
  • Chen, S., Khan, Z.A., Barbin, Y., Chakrabarti, S., Pro-oxidant role of heme oxygenase in mediating glucose-induced endothelial cell damage (2004) Free Radical Research, 38 (12), pp. 1301-1310. , DOI 10.1080/10715760400017228
  • Maines, M.D., The heme oxygenase system: A regulator of second messenger gases (1997) Annu Rev Pharmacol Toxicol, 37, pp. 517-554
  • Pomeraniec, Y., Grion, N., Gadda, L., Pannunzio, V., Podesta, E.J., Cymeryng, C.B., Adrenocorticotropin induces heme oxygenase-1 expression in adrenal cells (2004) Journal of Endocrinology, 180 (1), pp. 113-124. , DOI 10.1677/joe.0.1800113
  • Cymeryng, C.B., Dada, L.A., Colonna, C., Mendez, C.F., Podesta, E.J., Effects of L-arginine in rat adrenal cells: Involvement of nitric oxide synthase (1999) Endocrinology, 140 (7), pp. 2962-2967
  • Cymeryng, C.B., Lotito, S.P., Colonna, C., Finkielstein, C., Pomeraniec, Y., Grion, N., Gadda, L., Podesta, E.J., Expression of nitric oxide synthases in rat adrenal zona fasciculata cells (2002) Endocrinology, 143 (4), pp. 1235-1242. , DOI 10.1210/en.143.4.1235
  • Palm, F., Friederich, M., Carlsson, P.O., Hansell, P., Teerlink, T., Liss, P., Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: Implications for renomedullary oxygen availability (2008) Am J Physiol Renal Physiol, 294 (1), pp. F30-37
  • Cameron, O.G., Kronfol, Z., Greden, J.F., Carroll, B.J., Hypothalamic-pituitary-adrenocortical activity in patients with diabetes mellitus (1984) Archives of General Psychiatry, 41 (11), pp. 1090-1095
  • Chiodini, I., Adda, G., Scillitani, A., Coletti, F., Morelli, V., Di Lembo, S., Epaminonda, P., Arosio, M., Cortisol secretion in patients with type 2 diabetes: Relationship with chronic complications (2007) Diabetes Care, 30 (1), pp. 83-88. , http://care.diabetesjournals.org/cgi/reprint/30/1/83, DOI 10.2337/dc06-1267
  • Lee, Z.S., Chan, J.C., Yeung, V.T., Plasma insulin, growth hormone, cortisol, and central obesity among young Chinese type 2 diabetic patients (1999) Diabetes Care, 22 (9), pp. 1450-1457
  • Bruehl, H., Rueger, M., Dziobek, I., Sweat, V., Tirsi, A., Javier, E., Arentoft, A., Convit, A., Hypothalamic-pituitary-adrenal axis dysregulation and memory impairments in type 2 diabetes (2007) Journal of Clinical Endocrinology and Metabolism, 92 (7), pp. 2439-2445. , http://jcem.endojournals.org/cgi/reprint/92/7/2439, DOI 10.1210/jc.2006-2540
  • Chan, O., Inouye, K., Vranic, M., Matthews, S.G., Hyperactivation of the hypothalamo-pituitary-adrenocortical axis in streptozotocin-diabetes is associated with reduced stress responsiveness and decreased pituitary and adrenal sensitivity (2002) Endocrinology, 143 (5), pp. 1761-1768. , DOI 10.1210/en.143.5.1761
  • Rebuffat, P., Belloni, A.S., Malendowicz, L.K., Mazzocchi, G., Meneghelli, V., Nussdorfer, G.G., Effects of streptozotocin-induced experimental diabetes on the morphology and function of the zona fasciculata of rat adrenal cortex (1988) Virchows Archiv Abteilung B Cell Pathology, 56 (1), pp. 13-19
  • Yasumura, Y., Buonassisi, V., Sato, G., Clonal analysis of differentiated function in animal cell cultures. I. Possible correlated maintenance of differentiated function and the diploid karyotype (1966) Cancer Res, 26 (3), pp. 529-535
  • Schimmer, B.P., Adrenocortical Y1 cells (1979) Methods Enzymol, 58, pp. 570-574
  • Neher, R., Milani, A., Steroidogenesis in isolated adrenal cells: Excitation by calcium (1978) Mol Cell Endocrinol, 9 (3), pp. 243-253
  • Yagi, K., A simple fluorometric assay for lipoperoxide in blood plasma (1976) Biochem Med, 15 (2), pp. 212-216
  • Donze, O., Picard, D., RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase (2002) Nucleic Acids Res, 30 (10), pp. e46
  • Cymeryng, C.B., Dada, L.A., Podesta, E.J., Effect of nitric oxide on rat adrenal zona fasciculata steroidogenesis (1998) Journal of Endocrinology, 158 (2), pp. 197-203. , DOI 10.1677/joe.0.1580197
  • Del Punta, K., Charreau, E.H., Pignataro, O.P., Nitric oxide inhibits leydig cell steroidogenesis (1996) Endocrinology, 137 (12), pp. 5337-5343. , DOI 10.1210/en.137.12.5337
  • Schimmer, B.P., The 1994 Upjohn Award Lecture. Molecular and genetic approaches to the study of signal transduction in the adrenal cortex (1995) Can J Physiol Pharmacol, 73 (8), pp. 1097-1107
  • Hinck, L., Thissen, J.P., Pampfer, S., De Hertogh, R., Effect of high concentrations of glucose on differentiation of rat trophoblast cells in vitro (2003) Diabetologia, 46 (2), pp. 276-283
  • Chabrolle, C., Jeanpierre, E., Tosca, L., Rame, C., Dupont, J., Effects of high levels of glucose on the steroidogenesis and the expression of adiponectin receptors in rat ovarian cells (2008) Reprod Biol Endocrinol, 6, p. 11
  • Andreis, P.G., Mazzocchi, G., Cavallini, L., Rebuffat, P., Nussdorfer, G.G., Morphology and functional responses of isolated zona glomerulosa cells of streptozotocin-induced diabetic rats (1990) Experimental Pathology, 39 (2), pp. 65-71
  • Sharpe, P.C., Yue, K.K.M., Catherwood, M.A., McMaster, D., Trimble, E.R., The effects of glucose-induced oxidative stress on growth and extracellular matrix gene expression of vascular smooth muscle cells (1998) Diabetologia, 41 (10), pp. 1210-1219. , DOI 10.1007/s001250051054
  • Brignardello, E., Gallo, M., Aragno, M., Manti, R., Tamagno, E., Danni, O., Boccuzzi, G., Dehydroepiandrosterone prevents lipid peroxidation and cell growth inhibition induced by high glucose concentration in cultured rat mesangial cells (2000) Journal of Endocrinology, 166 (2), pp. 401-406
  • Powell, L.A., Warpeha, K.M., Xu, W., Walker, B., Trimble, E.R., High glucose decreases intracellular glutathione concentrations and upregulates inducible nitric oxide synthase gene expression in intestinal epithelial cells (2004) Journal of Molecular Endocrinology, 33 (3), pp. 797-803. , DOI 10.1677/jme.1.01671
  • Li, H., Jiang, T., Lin, Y., Zhao, Z., Zhang, N., HGF protects rat mesangial cells from high-glucose-mediated oxidative stress (2006) American Journal of Nephrology, 26 (5), pp. 519-530. , DOI 10.1159/000097368
  • Abidi, P., Zhang, H., Zaidi, S.M., Shen, W.-J., Leers-Sucheta, S., Cortez, Y., Han, J., Azhar, S., Oxidative stress-induced inhibition of adrenal steroidogenesis requires participation of p38 mitogen-activated protein kinase signaling pathway (2008) Journal of Endocrinology, 198 (1), pp. 193-207. , DOI 10.1677/JOE-07-0570
  • Yokoyama, T., Yamane, K., Minamoto, A., Tsukamoto, H., Yamashita, H., Izumi, S., Hoppe, G., Mishima, H.K., High glucose concentration induces elevated expression of anti-oxidant and proteolytic enzymes in cultured human retinal pigment epithelial cells (2006) Experimental Eye Research, 83 (3), pp. 602-609. , DOI 10.1016/j.exer.2006.02.016, PII S0014483506001801
  • Keyse, S.M., Tyrrell, R.M., Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite (1989) Proc Natl Acad Sci U S A, 86 (1), pp. 99-103
  • Applegate, L.A., Luscher, P., Tyrrell, R.M., Induction of heme oxygenase: A general response to oxidant stress in cultured mammalian cells (1991) Cancer Res, 51 (3), pp. 974-978
  • Otterbein, L.E., Choi, A.M., Heme oxygenase: Colors of defense against cellular stress (2000) Am J Physiol Lung Cell Mol Physiol, 279 (6), pp. L1029-1037
  • Hayashi, K., Haneda, M., Koya, D., Maeda, S., Isshiki, K., Kikkawa, R., Enhancement of glomerular heme oxygenase-1 expression in diabetic rats (2001) Diabetes Research and Clinical Practice, 52 (2), pp. 85-96. , DOI 10.1016/S0168-8227(01)00218-2, PII S0168822701002182
  • Chen, Y.H., Lin, S.J., Lin, F.Y., High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms (2007) Diabetes, 56 (6), pp. 1559-1568
  • Trachtman, H., Futterweit, S., Crimmins, D.L., High glucose inhibits nitric oxide production in cultured rat mesangial cells (1997) Journal of the American Society of Nephrology, 8 (8), pp. 1276-1282
  • Grion, N., Repetto, E.M., Pomeraniec, Y., Martinez Calejman, C., Astort, F., Sanchez, R., Pignataro, O.P., Cymeryng, C.B., Induction of nitric oxide synthase and heme oxygenase activities by endotoxin in the rat adrenal cortex: Involvement of both signaling systems in the modulation of ACTH-dependent steroid production (2007) Journal of Endocrinology, 194 (1), pp. 11-20. , DOI 10.1677/JOE-06-0199
  • Iori, E., Pagnin, E., Gallo, A., Heme oxygenase-1 is an important modulator in limiting glucose-induced apoptosis in human umbilical vein endothelial cells (2008) Life Sci, 82 (7-8), pp. 383-392
  • Trela, B.A., Carlson, G.P., Mayer, P.R., The effect of carbon monoxide on aminopyrine metabolism in the isolated perfused rabbit lung (1988) Toxicol Appl Pharmacol, 96 (3), pp. 442-450
  • Morgan, E.T., Ullrich, V., Daiber, A., Schmidt, P., Takaya, N., Shoun, H., Mcgiff, J.C., Boucher, J.-L., Cytochromes P450 and flavin monooxygenases - Targets and sources of nitric oxide (2001) Drug Metabolism and Disposition, 29 (11), pp. 1366-1376
  • Wang, W.W., Smith, D.L.H., Zucker, S.D., Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats (2004) Hepatology, 40 (2), pp. 424-433. , DOI 10.1002/hep.20334

Citas:

---------- APA ----------
Astort, F., Repetto, E.M., Martínez Calejman, C., Cipelli, J.M., Sánchez, R., Di Gruccio, J.M., Mercau, M.,..., Cymeryng, C.B. (2009) . High glucose-induced changes in steroid production in adrenal cells. Diabetes/Metabolism Research and Reviews, 25(5), 477-486.
http://dx.doi.org/10.1002/dmrr.978
---------- CHICAGO ----------
Astort, F., Repetto, E.M., Martínez Calejman, C., Cipelli, J.M., Sánchez, R., Di Gruccio, J.M., et al. "High glucose-induced changes in steroid production in adrenal cells" . Diabetes/Metabolism Research and Reviews 25, no. 5 (2009) : 477-486.
http://dx.doi.org/10.1002/dmrr.978
---------- MLA ----------
Astort, F., Repetto, E.M., Martínez Calejman, C., Cipelli, J.M., Sánchez, R., Di Gruccio, J.M., et al. "High glucose-induced changes in steroid production in adrenal cells" . Diabetes/Metabolism Research and Reviews, vol. 25, no. 5, 2009, pp. 477-486.
http://dx.doi.org/10.1002/dmrr.978
---------- VANCOUVER ----------
Astort, F., Repetto, E.M., Martínez Calejman, C., Cipelli, J.M., Sánchez, R., Di Gruccio, J.M., et al. High glucose-induced changes in steroid production in adrenal cells. Diabetes Metab. Res. Rev. 2009;25(5):477-486.
http://dx.doi.org/10.1002/dmrr.978