Artículo

Pickering, I.; Paleico, M.; Sirkin, Y.A.P.; Scherlis, D.A.; Factorovich, M.H. "Grand Canonical Investigation of the Quasi Liquid Layer of Ice: Is It Liquid?" (2018) Journal of Physical Chemistry B. 122(18):4880-4890
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this study, the solid-vapor equilibrium and the quasi liquid layer (QLL) of ice Ih exposing the basal and primary prismatic faces were explored by means of grand canonical molecular dynamics simulations with the monatomic mW potential. For this model, the solid-vapor equilibrium was found to follow the Clausius-Clapeyron relation in the range examined, from 250 to 270 K, with a δHsub of 50 kJ/mol in excellent agreement with the experimental value. The phase diagram of the mW model was constructed for the low pressure region around the triple point. The analysis of the crystallization dynamics during condensation and evaporation revealed that, for the basal face, both processes are highly activated, and in particular cubic ice is formed during condensation, producing stacking-disordered ice. The basal and primary prismatic surfaces of ice Ih were investigated at different temperatures and at their corresponding equilibrium vapor pressures. Our results show that the region known as QLL can be interpreted as the outermost layers of the solid where a partial melting takes place. Solid islands in the nanometer length scale are surrounded by interconnected liquid areas, generating a bidimensional nanophase segregation that spans throughout the entire width of the outermost layer even at 250 K. Two approaches were adopted to quantify the QLL and discussed in light of their ability to reflect this nanophase segregation phenomena. Our results in the μVT ensemble were compared with NPT and NVT simulations for two system sizes. No significant differences were found between the results as a consequence of model system size or of the working ensemble. Nevertheless, certain advantages of performing μVT simulations in order to reproduce the experimental situation are highlighted. On the one hand, the QLL thickness measured out of equilibrium might be affected because of crystallization being slower than condensation. On the other, preliminary simulations of AFM indentation experiments show that the tip can induce capillary condensation over the ice surface, enlarging the apparent QLL. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Grand Canonical Investigation of the Quasi Liquid Layer of Ice: Is It Liquid?
Autor:Pickering, I.; Paleico, M.; Sirkin, Y.A.P.; Scherlis, D.A.; Factorovich, M.H.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, Buenos Aires San Martin, 1650, Argentina
Palabras clave:Condensation; Liquids; Molecular dynamics; Segregation (metallography); Capillary condensation; Clausius Clapeyron relation; Crystallization dynamics; Experimental values; Indentation experiment; Molecular dynamics simulations; Nanometer length scale; Nanophase segregation; Ice
Año:2018
Volumen:122
Número:18
Página de inicio:4880
Página de fin:4890
DOI: http://dx.doi.org/10.1021/acs.jpcb.8b00784
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v122_n18_p4880_Pickering

Referencias:

  • Dosch, H., Lied, A., Bilgram, J., Glancing-angle X-ray scattering studies of the premelting of ice surfaces (1995) Surf. Sci., 327, pp. 145-164
  • Döppenschmidt, A., Butt, H.-J., Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy (2000) Langmuir, 16, pp. 6709-6714
  • Golecki, I., Jaccard, C., Intrinsic surface disorder in ice near the melting point (1978) J. Phys. C: Solid State Phys., 11, pp. 4229-4237
  • Furukawa, Y., Yamamoto, M., Kuroda, T., Ellipsometric study of the transition layer on the surface of an ice crystal (1987) J. Cryst. Growth, 82, pp. 665-677
  • Elbaum, M., Lipson, S., Dash, J., Optical study of surface melting on ice (1993) J. Cryst. Growth, 129, pp. 491-505
  • Sazaki, G., Zepeda, S., Nakatsubo, S., Yokomine, M., Furukawa, Y., Quasi-liquid layers on ice crystal surfaces are made up of two different phases (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 1052-1055
  • Sadtchenko, V., Ewing, G., Interfacial melting of thin ice films: An infrared study (2002) J. Chem. Phys., 116, pp. 4686-4697
  • Bluhm, H., Ogletree, D., Fadley, C., Hussain, Z., Salmeron, M., The premelting of ice studied with photoelectron spectroscopy (2002) J. Phys.: Condens. Matter, 14, pp. L227-L233
  • Sánchez, M.A., Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice (2017) Proc. Natl. Acad. Sci. U. S. A., 114, pp. 227-232
  • Björneholm, O., Hansen, M., Hodgson, A., Liu, L.-M., Limmer, D., Michaelides, A., Pedevilla, P., Tyrode, E., Water at Interfaces (2016) Chem. Rev., 116, pp. 7698-7726
  • Constantin, J.G., (2015) Propiedades Termodinámicas y Estructurales de Nanoagregados de Agua y de la Interfase Hielo-aire, , Ph.D. Thesis; Universidad de Buenos Aires: Buenos Aires, Argentina
  • Henson, B.F., Voss, L.F., Wilson, K.R., Robinson, J.M., Thermodynamic model of quasiliquid formation on H2O ice: Comparison with experiment (2005) J. Chem. Phys., 123, p. 144707
  • Murray, B.J., Bertram, A.K., Formation and stability of cubic ice in water droplets (2006) Phys. Chem. Chem. Phys., 8, pp. 186-192
  • Franks, F., (1972) Water, A Comprehensive Treatise: The Physics and Physical Chemistry of Water, , Water, a Comprehensive Treatise v. 1; v. 7; Plenum Press: New York, Chapter 4
  • Kroes, G.-J., Surface melting of the (0001) face of TIP4P ice (1992) Surf. Sci., 275, pp. 365-382
  • Conde, M.M., Vega, C., Patrykiejew, A., The thickness of a liquid layer on the free surface of ice as obtained from computer simulation (2008) J. Chem. Phys., 129, p. 014702
  • Paesani, F., Voth, G.A., Quantum effects strongly influence the surface premelting of ice (2008) J. Phys. Chem. C, 112, pp. 324-327
  • Limmer, D.T., Chandler, D., Premelting, fluctuations, and coarse-graining of water-ice interfaces (2014) J. Chem. Phys., 141, p. 18C505
  • Shepherd, T.D., Koc, M.A., Molinero, V., The Quasi-Liquid Layer of ice under conditions of Methane clathrate formation (2012) J. Phys. Chem. C, 116, pp. 12172-12180
  • Hudait, A., Allen, M.T., Molinero, V., Sink or Swim: Ions and organics at the IceAir interface (2017) J. Am. Chem. Soc., 139, pp. 10095-10103
  • Nguyen, A.H., Molinero, V., Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: The CHILL+ algorithm (2015) J. Phys. Chem. B, 119, pp. 9369-9376
  • Gelman Constantin, J., Carignano, M.A., Corti, H.R., Szleifer, I., Molecular dynamics simulation of ice indentation by model atomic force microscopy tips (2015) J. Phys. Chem. C, 119, pp. 27118-27124
  • Molinero, V., Moore, E.B., Water modeled as an intermediate element between carbon and silicon (2009) J. Phys. Chem. B, 113, pp. 4008-4016
  • Hudait, A., Molinero, V., What determines the ice polymorph in clouds? (2016) J. Am. Chem. Soc., 138, pp. 8958-8967
  • Lupi, L., Molinero, V., Does hydrophilicity of carbon particles improve their ice nucleation ability? (2014) J. Phys. Chem. A, 118, pp. 7330-7337
  • Hudait, A., Qiu, S., Lupi, L., Molinero, V., Free energy contributions and structural characterization of stacking disordered ices (2016) Phys. Chem. Chem. Phys., 18, pp. 9544-9553
  • Perez Sirkin, Y., Factorovich, M., Molinero, V., Scherlis, D., Vapor pressure of aqueous solutions of electrolytes reproduced with coarse-grained models without electrostatics (2016) J. Chem. Theory Comput., 12, pp. 2942-2949
  • Factorovich, M., Molinero, V., Scherlis, D., A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems (2014) J. Chem. Phys., 140, p. 064111
  • Factorovich, M., Molinero, V., Scherlis, D., Vapor pressure of water nanodroplets (2014) J. Am. Chem. Soc., 136, pp. 4508-4514
  • Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A., Sorption isotherms of water in nanopores: Relationship between hydropohobicity, adsorption pressure, and hysteresis (2014) J. Phys. Chem. C, 118, pp. 16290-16300
  • Stillinger, F.H., Weber, T.A., Computer simulation of local order in condensed phases of silicon (1985) Phys. Rev. B: Condens. Matter Mater. Phys., 31, pp. 5262-5271
  • Perez Sirkin, Y.A., Factorovich, M.H., Molinero, V., Scherlis, D.A., Stability and vapor pressure of aqueous aggregates and aerosols containing a monovalent ion (2017) J. Phys. Chem. A, 121, pp. 2597-2602
  • Plimpton, S., Fast parallel algorithms for short-Range molecular dynamics (1995) J. Comput. Phys., 117, pp. 1-19
  • Kroll, D.M., Lipowsky, R., Interface delocalization transitions in semi-infinite systems (1983) Phys. Rev. B: Condens. Matter Mater. Phys., 28, pp. 6435-6442
  • Nada, H., Furukawa, Y., Anisotropy in growth kinetics at interfaces between proton-disordered hexagonal ice and water: A molecular dynamics study using the six-site model of {H2O} (2005) J. Cryst. Growth, 283, pp. 242-256
  • Malkin, T.L., Murray, B.J., Salzmann, C.G., Molinero, V., Pickering, S.J., Whale, T.F., Stacking disorder in ice i (2015) Phys. Chem. Chem. Phys., 17, pp. 60-76
  • Hudait, A., Molinero, V., Ice Crystallization in Ultrafine Water-Salt Aerosols: Nucleation, Ice-Solution Equilibrium, and Internal Structure (2014) J. Am. Chem. Soc., 136, pp. 8081-8093
  • Lu, J., Chakravarty, C., Molinero, V., Relationship between the line of density anomaly and the lines of melting, crystallization, cavitation, and liquid spinodal in coarse-grained water models (2016) J. Chem. Phys., 144, p. 234507
  • Feistel, R., Wagner, W., A new equation of state for H2O ice Ih (2006) J. Phys. Chem. Ref. Data, 35, pp. 1021-1047
  • Murata, K.-I., Asakawa, H., Nagashima, K., Furukawa, Y., Sazaki, G., Thermodynamic origin of surface melting on ice crystals (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. E6741-E6748

Citas:

---------- APA ----------
Pickering, I., Paleico, M., Sirkin, Y.A.P., Scherlis, D.A. & Factorovich, M.H. (2018) . Grand Canonical Investigation of the Quasi Liquid Layer of Ice: Is It Liquid?. Journal of Physical Chemistry B, 122(18), 4880-4890.
http://dx.doi.org/10.1021/acs.jpcb.8b00784
---------- CHICAGO ----------
Pickering, I., Paleico, M., Sirkin, Y.A.P., Scherlis, D.A., Factorovich, M.H. "Grand Canonical Investigation of the Quasi Liquid Layer of Ice: Is It Liquid?" . Journal of Physical Chemistry B 122, no. 18 (2018) : 4880-4890.
http://dx.doi.org/10.1021/acs.jpcb.8b00784
---------- MLA ----------
Pickering, I., Paleico, M., Sirkin, Y.A.P., Scherlis, D.A., Factorovich, M.H. "Grand Canonical Investigation of the Quasi Liquid Layer of Ice: Is It Liquid?" . Journal of Physical Chemistry B, vol. 122, no. 18, 2018, pp. 4880-4890.
http://dx.doi.org/10.1021/acs.jpcb.8b00784
---------- VANCOUVER ----------
Pickering, I., Paleico, M., Sirkin, Y.A.P., Scherlis, D.A., Factorovich, M.H. Grand Canonical Investigation of the Quasi Liquid Layer of Ice: Is It Liquid?. J Phys Chem B. 2018;122(18):4880-4890.
http://dx.doi.org/10.1021/acs.jpcb.8b00784