Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, quantum mechanical calculations and Monte Carlo statistical mechanical simulations were carried out to investigate the solvation properties of HNO in aqueous solution and to evaluate the proton-coupled one electron reduction potential of 2NO to 1HNO, which is essential missing information to understand the fate of 2NO in the biological medium. Our results showed that the 1HNO molecule acts mainly as a hydrogen bond donor in aqueous solution with an average energy of -5.5 ± 1.3 kcal/mol. The solvation free energy of 1HNO in aqueous solution, computed using three approaches based on the linear response theory, revealed that the current prediction of the hydration free energy of HNO is, at least, 2 times underestimated. We proposed two pathways for the production of HNO through reduction of NO. The first pathway is the direct reduction of NO through proton-coupled electron transfer to produce HNO, and the second path is the reduction of the radical anion HONO•-, which is involved in equilibrium with NO in aqueous solution. We have shown that both pathways are viable processes under physiological conditions, having reduction potentials of E°′ = -0.161 V and E°′ ≈ 1 V for the first and second pathways, respectively. The results shows that both processes can be promoted by well-known biological reductants such as NADH, ascorbate, vitamin E (tocopherol), cysteine, and glutathione, for which the reduction potential at physiological pH is around -0.3 to -0.5 V. The computed reduction potential of NO through the radical anion HONO•- can also explain the recent experimental findings on the formation of HNO through the reduction of NO, promoted by H2S, vitamin C, and aromatic alcohols. Therefore, these results contribute to shed some light into the question of whether and how HNO is produced in vivo and also for the understanding of the biochemical and physiological effects of NO. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Solvation and Proton-Coupled Electron Transfer Reduction Potential of 2NO• to 1HNO in Aqueous Solution: A Theoretical Investigation
Autor:Venâncio, M.F.; Doctorovich, F.; Rocha, W.R.
Filiación:Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG 31270-901, Brazil
Departamento de Química Inorganica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales (INQUIMAE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Amino acids; Bioinformatics; Electron transitions; Free energy; Free radical reactions; Hydrogen bonds; Monte Carlo methods; pH; Physiology; Quantum theory; Solutions; Solvation; Hydration free energies; Linear-response theory; One-electron reduction potentials; Physiological condition; Proton coupled electron transfers; Quantum-mechanical calculation; Solvation free energies; Theoretical investigations; Reduction
Año:2017
Volumen:121
Número:27
Página de inicio:6618
Página de fin:6625
DOI: http://dx.doi.org/10.1021/acs.jpcb.7b03552
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v121_n27_p6618_Venancio

Referencias:

  • Ignarro, L.J., Buga, G.M., Wood, K.S., Byrnes, R.E., Chaudhuri, G., Endothelium-derived Relaxing Factor Produced and Released from Artery and Vein is Nitric Oxide (1987) Proc. Natl. Acad. Sci. U. S. A., 84, pp. 9265-9269
  • Palmer, R.M.J., Ashton, D.S., Moncada, S., Vascular Endothelial Cells Synthesize Nitric Oxide from L-arginine (1988) Nature, 333, pp. 664-666
  • Ignarro, L.J., Murad, F., (1995) Nitric Oxide: Biochemistry, Molecular Biology and Therapeutic Implications, , Academic Press: San Diego, CA
  • Ignarro, L.J., Endothelium-Derived Nitric Oxide: Pharmacology and Relationship to the Actions of Organic Nitrate Esters (1989) Pharm. Res., 6, pp. 651-659
  • Culotta, E., Koshland, D.E., NO News is Good news (1992) Science, 258, pp. 1862-1865
  • Feldman, P.L., Griffith, O.W., Stuehr, D., The Surprising Life of Nitric Oxide (1993) Chem. Eng. News, 71, pp. 26-38
  • Richter-Addo, G.B., Legzdins, P., (1992) Metal Nitrosyls, , Oxford University Press: New York
  • Wink, A.A., Darbyshire, J.F., Nims, R.W., Saavedra, J.E., Ford, P.C., Reactions of the Bioregulatory Agent Nitric Oxide in Oxygenated Aqueous Media: Determination of the Kinetics for Oxidation and Nitrosation by Intermediates Generated in the NO/O2 Reaction (1993) Chem. Res. Toxicol., 6, pp. 23-27
  • Chiang, T.M., Sayre, R.M., Dowdy, J.C., Wilkin, N.K., Rosenberg, E.W., Sunscreen ingredients inhibit inducible nitric oxide synthase (iNOS): A possible biochemical explanation for the sunscreen melanoma controversy (2005) Melanoma Res., 15, pp. 3-6
  • Weller, R., Nitric Oxide: A Key Mediator in Cutaneous Physiology (2003) Clin. Exp. Dermatol., 28, pp. 511-514
  • Stamler, J.S., Singel, D.J., Loscalzo, J., Biochemistry of nitric oxide and its redox-activated forms (1992) Science, 258, pp. 1898-1902
  • Shafirovich, V., Lymar, S.V., Nitroxyl and its Anion in Aqueous Solutions: Spin States, Protic Equilibria, and Reactivities Toward Oxygen and Nitric Oxide (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 7340-7345
  • Bartberger, M.D., Liu, W., Ford, E., Miranda, K.M., Switzer, C., Fukuto, J.M., Farmer, P.J., Houk, K.N., The Reduction Potential of Nitric Oxide (NO) and its Importance to NO Biochemistry (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 10958-10963
  • Hamer, M., Suarez, S.A., Neuman, N.I., Alvarez, L., Muñoz, M., Marti, M.A., Doctorovich, F., Discussing Endogenous NO•/HNO Interconversion Aided by Phenolic Drugs and Vitamins (2015) Inorg. Chem., 54, pp. 9342-9350
  • Suarez, A.A., Neuman, N.I., Muñoz, M., Álvarez, L., Bikiel, D.E., Brondino, C.D., Ivanović-Burmazović, I., Doctorovich, F., Nitric Oxide is Reduced to HNO by Proton-Coupled Nucleophilic Attack by Ascorbate, Tyrosine, and Other Alcohols. A New Route to HNO in Biological Media? (2015) J. Am. Chem. Soc., 137, pp. 4720-4727
  • Zhang, Y., Computational Investigations of HNO in Biology (2013) J. Inorg. Biochem., 118, pp. 191-200
  • Parr, R.G., Yang, W., (1989) Density Functional Theory of Atoms and Molecules, , Oxford University Press: New York
  • Staroverov, V.N., Scuseria, G.E., Tao, J., Perdew, J.P., Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes (2003) J. Chem. Phys., 119, pp. 12129-12137
  • Shavitt, I., Bartlett, R.J., (2009) Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory, , Cambridge University Press: New York
  • Neese, F., Liakos, D.G., Ye, S.F., Correlated Wavefunction Methods in Bioinorganic Chemistry (2011) JBIC, J. Biol. Inorg. Chem., 16, pp. 821-829
  • Harvey, J.N., The coupled-cluster description of electronic structure: Perspectives for bioinorganic chemistry (2011) JBIC, J. Biol. Inorg. Chem., 16, pp. 831-839
  • Weigend, F., Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305
  • Marenich, A.V., Cramer, C.J., Truhlar, D.G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions (2009) J. Phys. Chem. B, 113, pp. 6378-6396
  • Klamt, A., Schuurmann, G., COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient (1993) J. Chem. Soc., Perkin Trans. 2, pp. 799-805
  • Allen, M.P., Tildesley, D.J., (1989) Computer Simulation of Liquids, , Oxford University Press: Oxford, U.K
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935
  • Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids (1996) J. Am. Chem. Soc., 118, pp. 11225-11236
  • Breneman, C.M., Wiberg, K.B., Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis (1990) J. Comput. Chem., 11, pp. 361-373
  • Coutinho, K., Canuto, S., Zerner, M.C., A Monte Carlo-Quantum Mechanics study of the solvatochromic shifts of the lowest transition of benzene (2000) J. Chem. Phys., 112, pp. 9874-9880
  • Canuto, S., Coutinho, K., From Hydrogen Bond to Bulk: Solvation Analysis of the n→π∗ Transition of Formaldehyde in Water (2000) Int. J. Quantum Chem., 77, pp. 192-198
  • Coutinho, K., Canuto, S., (2003) DICE (Version 2.9): A Monte Carlo Program for Liquid Simulation, , University of São Paulo: São Paulo, Brazil
  • Åqvist, J., Medina, C., Samuelson, J.-E., A new method for predicting binding affinity in computer-aided drug design (1994) Protein Eng., Des. Sel., 7, pp. 385-391
  • Carlson, H.A., Jorgensen, W.L., An Extended Linear Response Method for Determining Free Energies of Hydration (1995) J. Phys. Chem., 99, pp. 10667-10673
  • De Lima, G.F., Duarte, H.A., Pliego, J.R., Jr., Dynamical Discrete/Continuum Linear Response Shells Theory of Solvation: Convergence Test for NH4+ and OH- Ions in Water Solution Using DFT and DFTB Methods (2010) J. Phys. Chem. B, 114, pp. 15941-15947
  • Neese, F., The ORCA program system (2012) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, pp. 73-78
  • Rulíšek, L., On the Accuracy of Calculated Reduction Potentials of Selected Group 8 (Fe, Ru, and Os) Octahedral Complexes (2013) J. Phys. Chem. C, 117, pp. 16871-16877
  • Isse, A.A., Gennaro, A., Absolute Potential of the Standard Hydrogen Electrode and the Problem of Interconversion of Potentials in Different Solvents (2010) J. Phys. Chem. B, 114, pp. 7894-7899
  • Rodrigues, G.L.S., Rocha, W.R., Formation and Release of NO from Ruthenium Nitrosyl Ammine Complexes [Ru(NH3)5(NO)]2+/3+ in aqueous solution: A Theoretical Investigation (2016) J. Phys. Chem. B, 120, pp. 11821-11833
  • Venâncio, M.F., Rocha, W.R., Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states (2015) Chem. Phys. Lett., 638, pp. 9-14
  • Stanbury, D.M., Reduction Potentials Involving Inorganic Free Radicals in Aqueous Solution (1989) Adv. Inorg. Chem., 33, pp. 69-138
  • Anderson, W.R., Heats of formation of HNO and some related species (1999) Combust. Flame, 117, pp. 394-403
  • Chase, M.W., Jr., (1998) J. Phys. Chem. Ref. Data, , Monograph 9 (Part I and Part II)
  • Bratsch, S.G., Standard electrode potentials and temperature coefficients in water at 298.15 K (1989) J. Phys. Chem. Ref. Data, 18, pp. 1-21
  • Dutton, A.S., Fukuto, J.M., Houk, K.N., Theoretical reduction potentials for nitrogen oxides from CBS-QB3 energetics and (C)PCM solvation calculations (2005) Inorg. Chem., 44, pp. 4024-4028
  • Kirchner, B., Eigen or Zundel ion: News from calculated and experimental photoelectron spectroscopy (2007) ChemPhysChem, 8, pp. 41-43
  • Powell, D.R., Adams, E.T., Jr., Self-association of gases 1. Theory. Application to the nitrogen dioxide-dinitrogen tetraoxide system (1978) J. Phys. Chem., 82, pp. 1947-1952
  • Haynes, W.M., (2011) CRC Handbook of Chemistry and Physics, , 92 th ed. CRC Press: Boca Raton, FL
  • (2017) MarvinView, , http://www.chemaxon.com, (version 17.4.30), ChemAxon (), accessed June 16, 2017
  • Eberhardt, M., Dux, M., Namer, B., Miljkovic, J., Cordasic, N., Will, C., Kichck, T.I., Filipovic, M.R., H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway (2014) Nat. Commun., 5, pp. 4381-4397
  • Filipovic, M.R., Eberhardt, M., Prokopovic, V., Mijuskovic, A., Orescanin-Dusic, Z., Reeh, P., Ivanovic-Burmazovic, I., Beyond H2S and NO interplay: Hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO (2013) J. Med. Chem., 56, pp. 1499-1508
  • Filipovic, M.R.M., Miljkovic, J.L.J., Nauser, T., Royzen, M., Klos, K., Shubina, T., Koppenol, W.H., Ivanovic, I., Chemical Characterization of the Smallest S-Nitrosothiol, HSNO; Cellular Cross-talk of H2S and S-Nitrosothiols (2012) J. Am. Chem. Soc., 134, pp. 12016-12027
  • Miljkovic, J.L., Kenkel, I., Ivanović-Burmazović, I., Filipovic, M.R., Generation of HNO and HSNO from Nitrite by Heme-Iron-Catalyzed Metabolism with H2S (2013) Angew. Chem., Int. Ed., 52, pp. 12061-12064
  • Harvey, J.N., Understanding the Kinetics of Spin-Forbidden Chemical Reactions (2007) Phys. Chem. Chem. Phys., 9, pp. 331-343
  • Lykhin, A.O., Kaliakin, D.S., Depolo, G.E., Kuzubov, A.A., Varganov, S.A., Nonadiabatic Transition State Theory: Application to Intersystem Crossings in the Active Sites of Metal-Sulfur Proteins (2016) Int. J. Quantum Chem., 116, pp. 750-761

Citas:

---------- APA ----------
Venâncio, M.F., Doctorovich, F. & Rocha, W.R. (2017) . Solvation and Proton-Coupled Electron Transfer Reduction Potential of 2NO• to 1HNO in Aqueous Solution: A Theoretical Investigation. Journal of Physical Chemistry B, 121(27), 6618-6625.
http://dx.doi.org/10.1021/acs.jpcb.7b03552
---------- CHICAGO ----------
Venâncio, M.F., Doctorovich, F., Rocha, W.R. "Solvation and Proton-Coupled Electron Transfer Reduction Potential of 2NO• to 1HNO in Aqueous Solution: A Theoretical Investigation" . Journal of Physical Chemistry B 121, no. 27 (2017) : 6618-6625.
http://dx.doi.org/10.1021/acs.jpcb.7b03552
---------- MLA ----------
Venâncio, M.F., Doctorovich, F., Rocha, W.R. "Solvation and Proton-Coupled Electron Transfer Reduction Potential of 2NO• to 1HNO in Aqueous Solution: A Theoretical Investigation" . Journal of Physical Chemistry B, vol. 121, no. 27, 2017, pp. 6618-6625.
http://dx.doi.org/10.1021/acs.jpcb.7b03552
---------- VANCOUVER ----------
Venâncio, M.F., Doctorovich, F., Rocha, W.R. Solvation and Proton-Coupled Electron Transfer Reduction Potential of 2NO• to 1HNO in Aqueous Solution: A Theoretical Investigation. J Phys Chem B. 2017;121(27):6618-6625.
http://dx.doi.org/10.1021/acs.jpcb.7b03552