Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

UV-visible spectroscopic studies of aqueous hydroquinone (HQ) and 1,4-benzoquinone (BQ) have been carried out along with classical molecular dynamics (MD) and quantum calculations. The experimental results confirmed that HQ is stable in hot compressed water up to at least 523 K at 70 bar, but BQ decomposes at temperatures lower than 373 K, leading to the formation of HQ and other nonabsorbing products. Even though benzoquinone is not stable, our study significantly extended the temperature range of other spectroscopic studies, and the spectra of HQ up to 523 K can still be useful for other studies, particularly those related to organic species in deep ocean hydrothermal vents. Classical MD simulations at high temperatures show, as expected, a weakening of the solute-solvent H-bonding interactions. The dependence of the maximum absorption of BQ on temperature was also analyzed, although a significant degree of decomposition was observed in the time frame of our experiments. The shift of the maximum absorption peak of BQ with temperature was consistent with time-dependent density functional theory calculations. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Experimental and Theoretical Study of the High-Temperature UV-Visible Spectra of Aqueous Hydroquinone and 1,4-Benzoquinone
Autor:Samiee, F.; Pedron, F.N.; Estrin, D.A.; Trevani, L.
Filiación:Faculty of Science, University of Ontario, Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada
Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA CABA, Argentina
Palabras clave:Chemical bonds; Hot springs; Molecular dynamics; Phenols; Spectroscopic analysis; Classical molecular dynamics; Degree of decomposition; H-bonding interaction; Hot compressed water; Quantum calculation; Spectroscopic studies; Time dependent density functional theory calculations; UV-Visible spectra; Density functional theory
Año:2016
Volumen:120
Número:40
Página de inicio:10547
Página de fin:10552
DOI: http://dx.doi.org/10.1021/acs.jpcb.6b07893
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v120_n40_p10547_Samiee

Referencias:

  • Liu, C.Y., Snyder, S.R., Bard, A.J., Electrochemistry in Near-Critical and Supercritical Fluids. 9. Improved Apparatus for Water Systems (23-385 °c). The Oxidation of Hydroquinone and Iodide (1997) J. Phys. Chem. B, 101, pp. 1180-1185
  • Xu, T., Liu, Q., Liu, Z., Wu, J., The Role of Supercritical Water in Pyrolysis of Carbonaceous Compounds (2013) Energy Fuels, 27, pp. 3148-3153
  • Razimov, A.V., Bekmashi, F.T., Liogon'Kii, B.I., Thermal Polymerization of p-Benzoquinone (1975) Polym. Sci. U.S.S.R., 17, pp. 3164-3170
  • Kaurola, P., Sharma, V., Vonk, A., Vattulainen, I., Róg, T., Distribution and Dynamics of Quinones in the Lipid Bilayer Mimicking the Inner Membrane of Mitochondria (2016) Biochim. Biophys. Acta, Biomembr., 1858, pp. 2116-2122
  • Ensafi, A.A., Jamei, H.R., Heydari-Bafrooei, E., Rezaei, B., Electrochemical Study of Quinone Redox Cycling: A Novel Application of DNA-Based Biosensors for Monitoring Biochemical Reactions (2016) Bioelectrochemistry, 111, pp. 15-22
  • Nueangnoraj, K., Tomai, T., Nishihara, H., Kyotani, T., Honma, I., An Organic Proton Battery Employing Two Redox-Active Quinones Trapped within the Nanochannels of Zeolite-Templated Carbon (2016) Carbon, 107, pp. 831-836
  • Ishii, Y., Tashiro, K., Hosoe, K., Al-Zubaidi, A., Kawasaki, S., Electrochemical Lithium-Ion Storage Properties of Quinone Molecules Encapsulated in Single-Walled Carbon Nanotubes (2016) Phys. Chem. Chem. Phys., 18, pp. 10411-10418
  • Lin, K., Chen, Q., Gerhardt, M.R., Tong, L., Kim, S.B., Eisenach, L., Valle, A.W., Marshak, M.P., Alkaline Quinone Flow Battery (2015) Science, 349, pp. 1529-1532
  • Tossell, J.A., Quinone-Hydroquinone Complexes as Model Components of Humic Acids: Theoretical Studies of their Structure, Stability and Visible-UV Spectra (2009) Geochim. Cosmochim. Acta, 73, pp. 2023-2033
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., DeBolt, S., Ferguson, D., Kollman, P., AMBER, a Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the Structural and Energetic Properties of Molecules (1995) Comput. Phys. Commun., 91, pp. 1-41
  • Scalmani, G., Frisch, M.J., Continuous Surface Charge Polarizable Continuum Models of Solvation. I. General Formalism (2010) J. Chem. Phys., 132, p. 114110
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, , Gaussian, Inc. Wallingford, CT
  • Trevani, L.N., Roberts, J.C., Tremaine, P.R., Copper(II)-Ammonia Complexation Equilibria in Aqueous Solutions at Temperatures from 30 to 250 °c by Visible Spectroscopy (2001) J. Solution Chem., 30, pp. 585-622
  • Lemmon, E.W., Huber, M.L., McLinden, M.O., (2013) NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, , version 9.1; National Institute of Standards and Technology, Standard Reference Data Program: Gaithersburg, MD
  • Ahmed, M., Khan, Z.H., Electronic Absorption Spectra of Benzoquinone and its Hydroxy Substituents and Effect of Solvents on their Spectra (2000) Spectrochim. Acta, Part A, 56, pp. 965-981
  • Abascal, J.L.F., Vega, C., A General Purpose Model for the Condensed Phases of Water: TIP4P/2005 (2005) J. Chem. Phys., 123, p. 234505
  • Bayly, C.I., Cieplak, P., Cornell, W., Kollman, P.A., A Well Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model (1993) J. Phys. Chem., 97, pp. 10269-10280
  • Kaatze, U., Complex Permittivity of Water as a Function of Frequency and Temperature (1989) J. Chem. Eng. Data, 34, pp. 371-374
  • Putintsev, N.M., Putintsev, D.N., High-Frequency Dielectric Permittivity of Water and its Components (2011) Russ. J. Phys. Chem. A, 85, pp. 1113-1118
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
  • Becke, A.D., A New Mixing of Hartree-Fock and Local Density-Functional Theories (1993) J. Chem. Phys., 98, pp. 1372-1377
  • Zhao, Y., Truhlar, D.G., The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals (2008) Theor. Chem. Acc., 120, pp. 215-241
  • Barone, V., Cacelli, I., Crescenzi, O., D'Ischia, M., Ferretti, A., Prampolini, G., Villani, G., Unraveling the Interplay of Different Contributions to the Stability of the Quinhydrone Dimer (2014) RSC Adv., 4, pp. 876-885
  • Uematsu, M., Frank, E.U., Static Dielectric Constant of Water and Steam (1980) J. Phys. Chem. Ref. Data, 9, pp. 1291-1306

Citas:

---------- APA ----------
Samiee, F., Pedron, F.N., Estrin, D.A. & Trevani, L. (2016) . Experimental and Theoretical Study of the High-Temperature UV-Visible Spectra of Aqueous Hydroquinone and 1,4-Benzoquinone. Journal of Physical Chemistry B, 120(40), 10547-10552.
http://dx.doi.org/10.1021/acs.jpcb.6b07893
---------- CHICAGO ----------
Samiee, F., Pedron, F.N., Estrin, D.A., Trevani, L. "Experimental and Theoretical Study of the High-Temperature UV-Visible Spectra of Aqueous Hydroquinone and 1,4-Benzoquinone" . Journal of Physical Chemistry B 120, no. 40 (2016) : 10547-10552.
http://dx.doi.org/10.1021/acs.jpcb.6b07893
---------- MLA ----------
Samiee, F., Pedron, F.N., Estrin, D.A., Trevani, L. "Experimental and Theoretical Study of the High-Temperature UV-Visible Spectra of Aqueous Hydroquinone and 1,4-Benzoquinone" . Journal of Physical Chemistry B, vol. 120, no. 40, 2016, pp. 10547-10552.
http://dx.doi.org/10.1021/acs.jpcb.6b07893
---------- VANCOUVER ----------
Samiee, F., Pedron, F.N., Estrin, D.A., Trevani, L. Experimental and Theoretical Study of the High-Temperature UV-Visible Spectra of Aqueous Hydroquinone and 1,4-Benzoquinone. J Phys Chem B. 2016;120(40):10547-10552.
http://dx.doi.org/10.1021/acs.jpcb.6b07893