Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model
Autor:Constantin, J.G.; Schneider, M.; Corti, H.R.
Filiación:Instituto de Química Física de Los Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina
Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, San Martin, Buenos Aires, 1650, Argentina
Palabras clave:Biocatalysts; Free volume; Fructose; Glass; Glucose; Image segmentation; Liquid sugar; Liquids; Mixtures; Solutions; Specific heat; Sugar (sucrose); Sugars; Supercooling; Temperature; Temperature distribution; Thermal expansion; Volume measurement; Gordon-Taylor model; Heat capacity change; High density liquid waters; Low temperatures; Structure of liquids; Supercooled regions; Temperature dependence; Thermal expansion coefficients; Glass transition
Año:2016
Volumen:120
Número:22
Página de inicio:5047
Página de fin:5055
DOI: http://dx.doi.org/10.1021/acs.jpcb.6b01841
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v120_n22_p5047_Constantin

Referencias:

  • Reid, D.S., Manifestation of Molecular Mobilities in Amorphous Aqueous Systems: The View from Different Experimental Techniques (2006) Water Properties of Food, Pharmaceutical, and Biological Materials, pp. 59-76. , Buera, M. P. Welti-Chanes, J. Lillford, P. J. Corti, H. R. CRC, Taylor & Francis
  • Corti, H.R., Angell, C.A., Auffret, T., Levine, H., Buera, M.P., Reid, D.S., Roos, Y., Slade, L., Empirical and Theoretical Models of Equilibrium and Non-Equilibrium Transition Temperatures of Supplemented Phase Diagrams in Aqueous Systems (2010) Pure Appl. Chem., 82, pp. 1065-1097
  • Miller, D.P., De Pablo, J.J., Corti, H.R., Thermophysical Properties of Concentrated Aqueous Trehalose Solutions (1997) Pharm. Res., 14, pp. 578-590
  • Cohen, M.H., Turnbull, D., Molecular Transport in Liquids and Glasses (1959) J. Chem. Phys., 31, pp. 1164-1169
  • Callen, H.B., (1960) Thermodynamics, , Wiley: New York
  • Gordon, J.M., Taylor, J.S., Ideal Copolymers and the Second-Order Transitions of Synthetic Rubbers. I. Non-crystalline Copolymers (1952) J. Appl. Chem., 2, pp. 493-500
  • Simha, R., Boyer, R.F., On a General Relation Involving the Glass Temperature and Coefficients of Expansion of Polymers (1962) J. Chem. Phys., 37, pp. 1003-1007
  • Roos, Y., Melting and Glass Transitions of Low Molecular Weight Carbohydrates (1993) Carbohydr. Res., 238, pp. 39-48
  • Roos, Y., Karel, M., Differential Scanning Calorimetry Study of Phase Transitions Affecting the Quality of Dehydrated Materials (1990) Biotechnol. Prog., 6, pp. 159-163
  • Ablett, S., Izzard, M.J., Lillford, J., Differential Scanning Calorimetric Study of Frozen Sucrose and Glycerol Solutions (1992) J. Chem. Soc.; Faraday Trans., 88, pp. 789-794
  • Luyet, B., Rasmussen, D., Study by Differential Thermal Analysis of the Temperatures of Instability of Rapidly Cooled Solutions of Polyvinylpyrrolidone (1968) Biodynamica, 10, pp. 167-191
  • Goff, H.D., The Use of Thermal Analysis in the Development of a Better Understanding of Frozen Food Stability (1995) Pure Appl. Chem., 67, pp. 1801-1808
  • Saleki-Gerhardt, A., Zografi, G., Non-Isothermal and Isothermal Crystallization of Sucrose from the Amorphous State (1994) Pharm. Res., 11, pp. 1166-1173
  • Ottenhof, M.-A., MacNaughtan, W., Farhat, I.A., FTIR Study of State and Phase Transitions of Low Moisture Sucrose and Lactose (2003) Carbohydr. Res., 338, pp. 2195-2202
  • Shalaev, E.Y., Franks, F., Structural Glass Transitions and Thermophysical Processes in Amorphous Carbohydrates and their Supersaturated Solutions (1995) J. Chem. Soc.; Faraday Trans., 91, pp. 1511-1517
  • Shamblin, S., Taylor, L., Zografi, G., Mixing Behavior of Colyophilized Binary Systems (1998) J. Pharm. Sci., 87, pp. 694-701
  • Elamin, A.A., Sebhatu, T., Ahlneck, C., Mixing Behavior of Colyophilized Binary Systems (1995) Int. J. Pharm., 119, pp. 25-36
  • Miller, D., De Pablo, J.J., Calorimetric Solution Properties of Simple Saccharides and their Significance for the Stabilization of Biological Structure and Function (2000) J. Phys. Chem. B, 104, pp. 8876-8883
  • Orford, P.D., Parker, R., Ring, S.G., Aspects of the Glass Transition Behaviour of Mixtures of Carbohydrates of Low Molecular Weight (1990) Carbohydr. Res., 196, pp. 11-18
  • Hatley, R.H.M., Van Den Berg, C., Franks, F., The Unfrozen Water Content of Maximally Freeze-Concentrated Carbohydrate Solutions: Validity of the Methods Used for its Determination (1991) Cryo-Lett., 12, pp. 113-124
  • Miller, D.P., De Pablo, J.J., Corti, H.R., Viscosity and Glass Transition Temperature of Aqueous Mixtures of Trehalose with Borax and Sodium Chloride (1999) J. Phys. Chem. B, 103, pp. 10243-10249
  • Crowe, L.M., Reid, D.S., Crowe, J.H., Is Trehalose Special for Preserving Dry Biomaterials? (1996) Biophys. J., 71, pp. 2087-2093
  • Elias, M.E., Elias, A.M., Trehalose + Water Fragile System: Properties and Glass Transition (1999) J. Mol. Liq., 83, pp. 303-310
  • Ding, S.P., Fan, J., Green, J.L., Sanchez, E., Angell, C.A., Vitrification of Trehalose by Water Loss from its Crystalline Dehydrate (1996) J. Therm. Anal., 47, pp. 1391-1405
  • Taylor, L., Zografi, G., Sugar-Polymer Hydrogen Bond Interactions in Lyophilized Amorphous Mixtures (1998) J. Pharm. Sci., 87, pp. 1615-1621
  • Sugisaki, M., Suga, H., Seki, S., Calorimetric Study of the Glassy State. IV. Heat Capacities of Glassy Water and Cubic Ice (1968) Bull. Chem. Soc. Jpn., 41, pp. 2591-2599
  • Hallbrucker, A., Mayer, E., Johari, G.P., Glass-Liquid Transition and the Enthalpy of Devitrification of Annealed Vapor-Deposited Amorphous Solid Water (1989) J. Phys. Chem., 93, pp. 4986-4990
  • Johari, G.P., Hallbrucker, A., Mayer, E., Two Calorimetrically Distinct States of Liquid Water below 150 K (1996) Science, 273, pp. 90-92
  • Johari, G.P., Hallbrucker, A., Mayer, E., The Glass-Liquid Transition of Hyperquenched Water (1987) Nature, 330, pp. 552-553
  • Hallbrucker, A., Mayer, E., Johari, G.P., The Heat Capacity and Glass Transition of Hyperquenched Glassy Water (1989) Philos. Mag. B, 60, pp. 179-187
  • Johari, G.P., Astl, G., Mayer, E., Enthalpy Relaxation of Glassy Water (1990) J. Chem. Phys., 92, pp. 809-810
  • Johari, G.P., Hallbrucker, A., Mayer, E., Isotope Effect on the Glass Transition and Crystallization of Hyperquenched Glassy Water (1990) J. Chem. Phys., 92, pp. 6742-6747
  • Kohl, I., Hallbrucker, A., Mayer, E., The Glassy Water-Cubic Ice System: A Comparative Study by X-Ray Diffraction and Differential Scanning Calorimetry (2000) Phys. Chem. Chem. Phys., 2, pp. 1579-1586
  • Couchman, P.R., Karasz, F.E., A Classical Thermodynamic Discussion of the Effect of Composition on Glass-Transition Temperatures (1978) Macromolecules, 11, pp. 117-119
  • Couchman, P.R., Thermodynamics and the Compositional Variation of Glass Transition Temperatures (1987) Macromolecules, 20, pp. 1712-1717
  • Gordon, J.M., Rouse, G.B., Gibbs, J.H., Risen, W.M., Jr., The Composition Dependence of Glass Transition Properties (1977) J. Chem. Phys., 66, pp. 4971-4977
  • Ten Brinke, G., Karasz, F.E., Ellis, T.S., Depression of Glass Transition Temperatures of Polymer Networks by Diluents (1983) Macromolecules, 16, pp. 244-249
  • Orford, P.D., Parker, R., Ring, S.G., Smith, A.C., Effect of Water as a Diluent on the Glass Transition Behaviour of Malto-Olygosaccharides, Amylose and Amylopectin (1989) Int. J. Biol. Macromol., 11, pp. 91-96
  • Angell, C.A., Insights into Phases of Liquid Water from Study of its Unusual Glass-Forming Properties (2008) Science, 319, pp. 582-587
  • Kohl, I., Bachmann, L., Mayer, E., Hallbrucker, A., Loerting, T., Water Behaviour: Glass transition in Hyperquenched Water? (2005) Nature, 435, p. E1
  • Blond, G., Simatos, D., Catté, M., Dussap, C.G., Gros, J.B., Modeling of the Water-Sucrose State Diagram below 0 °c (1997) Carbohydr. Res., 298, pp. 139-145
  • Katkov, I., Levine, F., Prediction of the Glass Transition Temperature of Water Solutions: Comparison of Different Models (2004) Cryobiology, 49, pp. 62-82
  • Jenckel, E., Heusch, R., Die Erniedrigung der Einfriertemperatur Organischer Gläser durch Lösungsmittel (1953) Colloid Polym. Sci., 130, pp. 89-105
  • Lesikar, A.V., Glass Transition in Organic Halide Mixtures (1975) Phys. Chem. Glasses, 16, pp. 83-90
  • Kolker, A., Miller, D., De Pablo, J.J., (1995), Proceedings of the AIChE Annual Meeting, Miami Beach, FL; Zallen, R., (1983) The Physics of Amourphous Solids, , John Wiley & Sons
  • Shah, B.N., Schall, C.A., Measurement and Modeling of the Glass Transition Temperatures of Multi-Component Solutions (2006) Thermochim. Acta, 443, pp. 78-86
  • Rodriguez Furlán, L.T., Lecot, J., Pérez Padilla, A., Campderrós, M.E., Effect of Saccharides on Glass Transition Temperatures of Frozen and Freeze Dried Bovine Plasma Protein (2011) J. Food Eng., 106, pp. 74-79
  • Fox, T.G., Influence of Diluent and Copolymer Composition on the Glass Transition Temperature of a Polymer System (1956) Bull. Am. Phys. Soc., 2, pp. 123-135
  • Zheleznyi, B.V., The Density of Supercooled Water (1969) Russ. J. Phys. Chem., 43, pp. 1311-1312
  • Mallamace, F., Branca, C., Broccio, M., Corsaro, C., Mou, C.-Y., Chen, S.H., The Anomalous Behavior of the Density of Water in the Range 30 K < T < 373 K (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 18387-18391
  • Mishima, O., Volume of Supercooled Water under Pressure and the Liquid-Liquid Critical Point (2010) J. Chem. Phys., 133, p. 144503
  • Poole, P., Essmann, U., Sciortino, F., Stanley, H.E., Phase Diagram for Amorphous Solid Water (1993) Phys. Rev. E: Stat. Phys.; Plasmas, Fluids, Relat. Interdiscip. Top., 48, pp. 4605-4610
  • Holten, V., Bertrand, C.E., Anisimov, M.A., Sengers, J.V., Thermodynamics of Supercooled Water (2012) J. Chem. Phys., 136, p. 094507
  • Mishima, O., The Glass-To-Liquid Transition of the Emulsified High-Density Amorphous Ice Made by Pressure-Induced Amorphization (2004) J. Chem. Phys., 121, pp. 3161-3164
  • Corti, H.R., Nores Pondal, F., Angell, C.A., Heat Capacity and Glass Transition in P2O5-H2O Solutions: Support for Mishima's Conjecture on Solvent Water at Low Temperature (2011) Phys. Chem. Chem. Phys., 13, pp. 19741-19748
  • Jasra, R.V., Ahluwalia, J.C., Enthalpies and Heat Capacities of Dissolution, Apparent Molar Heat Capacities, and Apparent Molar Volumes of Some Mono-, Di-, Tri-, and Tetra-Saccharides in Water (1984) J. Chem. Thermodyn., 16, pp. 583-590
  • Banipal, P.K., Banipal, T.S., Lark, B.S., Ahluwalia, J.C., Partial Molar Heat Capacities and Volumes of Some Mono-, Di- and Tri-Saccharides in Water at 298.15, 308.15 and 318.15 K (1997) J. Chem. Soc.; Faraday Trans., 93, pp. 81-87
  • Galema, S.A., Høiland, H., Stereochemical Aspects of Hydration of Carbohydrates in Aqueous Solutions. 3. Density and Ultrasound Measurements (1991) J. Phys. Chem., 95, pp. 5321-5326
  • Birch, G.G., Catsoulis, S., Apparent Molar Volumes of Sugars and their Significance in Sweet Taste Chemoreception (1985) Chem. Senses, 10, pp. 325-332
  • Magazú, S., Migliardo, P., Musolino, A.M., Sciortino, M.T., α,α-trehalose-water Solutions. 1. Hydration Phenomena and Anomalies in the Acoustic Properties (1997) J. Phys. Chem. B, 101, pp. 2348-2351
  • Pancoast, H.M., Junk, W.R., (1980) Handbook of Sugars, , Eds. AVI Publishing Co. Inc. Westport, CT
  • Fucaloro, A.F., Pu, Y., Cha, K., Williams, A., Conrad, K., Partial Molar Volumes and Refractions of Aqueous Solutions of Fructose, Glucose, Mannose, and Sucrose at 15.00, 20.00 and 25.00 °c (2007) J. Solution Chem., 36, pp. 61-80
  • Ruiz-Cabrera, M.A., Rivera-Bautista, C., Grajales-Lagunes, A., González-García, R., Schmidt, S.J., State Diagrams for Mixtures of Low Molecular Weight Carbohydrates (2016) J. Food Eng., 171, pp. 185-193
  • Seo, J., Kim, S.J., Oh, J., Kim, H.K., Hwang, Y.-H., Brillouin Scattering and DSC Studies of Glass Transition Temperatures of Glucose-Water Mixtures (2004) J. Korean Phys. Soc., 44, pp. 523-526
  • Mehl, P.M., Fictive Glass-Transition Temperature and Fragility for the Phase Diagram of the System Fructose/Water (1998) Thermochim. Acta, 324, pp. 215-221
  • Ablett, S., Izzard, M., Lillford, P.J., Arvanitoyannis, I., Blanshard, J.M.V., Calorimetric Study of the Glass Transition Occurring in Fructose Solutions (1993) Carbohydr. Res., 246, pp. 13-22
  • Shinyashiki, N., Shinohara, M., Iwata, Y., Goto, T., Oyama, M., Suzuki, S., Yamamoto, W., Capaccioli, S., The Glass Transition and Dielectric Secondary Relaxation of Fructose-Water Mixtures (2008) J. Phys. Chem. B, 112, pp. 15470-15477
  • Simperler, A., Kornherr, A., Chopra, R., Bonnet, A., Jones, W., Motherwell, W.D.S., Zifferer, G., Glass Transition Temperature of Glucose, Sucrose, and Trehalose: An Experimental and in Silico Study (2006) J. Phys. Chem. B, 110, pp. 19678-19684

Citas:

---------- APA ----------
Constantin, J.G., Schneider, M. & Corti, H.R. (2016) . Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model. Journal of Physical Chemistry B, 120(22), 5047-5055.
http://dx.doi.org/10.1021/acs.jpcb.6b01841
---------- CHICAGO ----------
Constantin, J.G., Schneider, M., Corti, H.R. "Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model" . Journal of Physical Chemistry B 120, no. 22 (2016) : 5047-5055.
http://dx.doi.org/10.1021/acs.jpcb.6b01841
---------- MLA ----------
Constantin, J.G., Schneider, M., Corti, H.R. "Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model" . Journal of Physical Chemistry B, vol. 120, no. 22, 2016, pp. 5047-5055.
http://dx.doi.org/10.1021/acs.jpcb.6b01841
---------- VANCOUVER ----------
Constantin, J.G., Schneider, M., Corti, H.R. Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model. J Phys Chem B. 2016;120(22):5047-5055.
http://dx.doi.org/10.1021/acs.jpcb.6b01841