Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present results from ring polymer molecular dynamics experiments that provide microscopic insights into the characteristics of the isotopic stabilizations of H and D aqueous species in the first solvation shell of a halide I- ion in water nanoclusters at low temperatures. The analysis of the simplest I-·(HOD) dimer shows a clear propensity for the light isotope to lie at the non-hydrogen-bonded dangling position. Our results predict that, at T ∼ 50 K, I-·(DOH) isomers are three times more abundant than I-·(HOD) ones. The reasons for such stabilization can be traced back to differences in the nuclear kinetic energy projected along directions perpendicular to the plane of the water molecule. Dynamical implications of these imbalances are shown to be reflected in the characteristics of the corresponding bands of the infrared spectroscopic signals. A similar analysis performed in larger aggregates containing ∼20 water molecules reveals, in contrast, a stabilization of the light isotope along I-⋯HO hydrogen bonds. Effects derived from the consideration of smaller halide anions with larger electric fields at the surface are also examined. (Figure Presented). © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Isotopic Preferential Solvation of I- in Low-Temperature Water Nanoclusters
Autor:Videla, P.E.; Rossky, P.J.; Laria, D.
Filiación:Departamento de Química Inorgánica Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Buenos Aires, 1428, Argentina
Department of Chemistry, Rice University, Houston, TX 77005-1892, United States
Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, Buenos Aires, 1429, Argentina
Palabras clave:Dimers; Electric fields; Hydrogen bonds; Isomers; Isotopes; Kinetic energy; Kinetics; Molecular dynamics; Molecules; Nanoclusters; Solvation; Temperature; Aqueous species; Energy projected; Infrared spectroscopic; Low temperatures; Preferential solvation; Similar analysis; Solvation shell; Water nanoclusters; Stabilization
Año:2015
Volumen:119
Número:35
Página de inicio:11783
Página de fin:11790
DOI: http://dx.doi.org/10.1021/acs.jpcb.5b05561
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v119_n35_p11783_Videla

Referencias:

  • Robertson, W.H., Johnson, M.A., Molecular Aspects of Halide Ion Hydration: The Cluster Approach (2003) Annu. Rev. Phys. Chem., 54, pp. 173-213
  • Ayotte, P., Nielsen, S.B., Weddle, G.H., Johnson, M.A., Xantheas, S.S., Spectroscopic Observation of Ion-Induced Water Dimer Dissociation in the X-·(H2O)2 (X= F, Cl, Br, I) Clusters (1999) J. Phys. Chem. A, 103, pp. 10665-10669
  • Ayotte, P., Weddle, G.H., Kim, J., Johnson, M.A., Mass-Selected Matrix Isolation Infrared Spectroscopy of the I-·(H2O)2 Complex: Making and Breaking the Inter-Water Hydrogen-Bond (1998) Chem. Phys., 239, pp. 485-491
  • Roscioli, J.R., Diken, E.G., Johnson, M.A., Horvath, S., McCoy, A.B., Prying Apart a Water Molecule with Anion H-Bonding: A Comparative Spectroscopic Study of the X-·H2O (X = OH, O, F, Cl, and Br) Binary Complexes in the 600-3800 cm-1 Region (2006) J. Phys. Chem. A, 110, pp. 4943-4952
  • Sung, S.S., Jordan, P.C., Structures and Energetics of Monovalents Ion-Water Microclusters (1986) J. Chem. Phys., 85, pp. 4045-4051
  • Lin, S., Jordan, P.C., Structures and Energetics of Monovalents Ion-Water Microclusters: II. Thermal Phenomena (1988) J. Chem. Phys., 89, pp. 7492-7501
  • Lee, H.M., Kim, J.S., Structures and Spectra of Iodide-Water Clusters I-(H2O)n=1,6: An ab-initio Study (2001) J. Chem. Phys., 114, pp. 4461-4471
  • Perera, L., Berkowitz, M.L., Stabilization Energies of Cl-, Br-, and I- Ions in Water Clusters (1993) J. Chem. Phys., 99, pp. 4222-4224
  • Combariza, J.W., Kestner, N.R., Jortner, J., Energy-Structure Relationships for Microscopic Solvation of Anions in Water Clusters (1994) J. Chem. Phys., 100, pp. 2851-2864
  • Perera, L., Berkowitz, M.L., Structures of Cl-(H2O)n and F-(H2O)n (n = 2,3,...,15) Clusters. Molecular Dynamics Computer Simulations (1994) J. Chem. Phys., 100, pp. 3085-3093
  • Xantheas, S.S., Quantitative Description of Hydrogen Bonding in Chloride-Water Clusters (1996) J. Phys. Chem., 100, pp. 9703-9713
  • Baik, J., Kim, J., Majumdar, D., Kim, K.S., Structures, Energetics, and Spectra of Fluoride-Water Clusters F-(H2O)n, n = 1-6: Ab Initio Study (1999) J. Chem. Phys., 110, pp. 9116-9127
  • Kim, J., Lee, H.M., Suh, S.B., Majumdar, D., Kim, K.S., Comparative ab-initio Study of the Structures, Energetics and Spectra of X-·(H2O)n=1-4 [X = F, Cl, Br, I] Clusters (2000) J. Chem. Phys., 113, pp. 5259-5272
  • Thompson, W.H., Hynes, J.T., Frequency Shifts in the Hydrogen-Bonded OH Stretch in Halide-Water Clusters. The Importance of Charge Transfer (2000) J. Am. Chem. Soc., 122, pp. 6278-6286
  • McCunn, L.R., Roscioli, J.R., Johnson, M.A., McCoy, A.B., An H/D Isotopic Substituion Study of the H5O 2 +·Ar Vibrational Predissociation Spectra: Exploring the Putative Role of Fermi Resosnces in the Bridging Proton Fundamentals (2008) J. Phys. Chem. B, 112, pp. 321-327
  • Vendrell, O., Gatti, F., Meyer, H.-D., Full Dimensional (15 Dimensional) Quantum-Dynamical Simulation of the Protonated Water-Dimer IV: Isotope Effects in the Infrared Spectra of D(D2O)2, H(D2O)2 and D(H2O)2 Isotopologues (2009) J. Chem. Phys., 131
  • Videla, P.E., Rossky, P.J., Laria, D., Surface Isotope Segregation as a Proble of Temperature in Water Nanoclusters (2014) J. Phys. Chem. Lett., 5, pp. 2375-2379
  • Diken, E.G., Shin, J.-W., Price, E.A., Johnson, M.A., Isotopic Fractionation and Zero-Point Effects in Anionic H-Bonded Complexes: A Comparison of the I-·HDO and F-·HDO Ion-Molecule Clusters (2004) Chem. Phys. Lett., 387, pp. 17-22
  • Horvath, S., McCoy, A.B., Elliott, B.M., Weddle, G.H., Roscioli, J.R., Johnson, M.A., Anharmonicities and Isotopic Effects in the Vibrational Spectra of X-·H2O, ·hDO, and ·d2O [X = Cl, Br, and I] Binary Complexes (2010) J. Phys. Chem. A, 114, pp. 1556-1568
  • Rheinecker, J.L., Bowman, J.M., The Calculated Infrared Spectrum of Cl-H2O Using a Full Dimensional ab-initio Potential Surface and Dipole Moment Surface (2006) J. Chem. Phys., 124
  • Irle, S., Bowman, J., Direct Ab Initio Variational Calculation of Vibrational Energies of the H2O⋯Cl- Complex and Resolution of Experimental Differences (2000) J. Chem. Phys., 113, pp. 8401-8403
  • Huang, X., Habershon, S., Bowman, J.M., Comparison of Quantum, Classical, and Ring-Polymer Molecular Dynamics Ion-Water Microclusters: II. Thermal Phenomena (2008) Chem. Phys. Lett., 450, pp. 253-257
  • Habershon, S., Manolopoulos, D.E., Markland, T.E., Miller, T.F., III, Ring-Polymer Molecular Dynamics: Quantum Effects in Chemical Dynamics from Classical Trajectories in an Extended Phase Space (2013) Annu. Rev. Phys. Chem., 64, p. 387
  • Tuckerman, M.E., (2010) Statistical Mechanics: Theory and Molecular Simulation, , Chapter 10. Oxford University Press: Oxford
  • Habershon, S., Markland, T.E., Manolopoulos, D.E., Competing Quantum Effects in the Dynamics of a Flexible Water Model (2009) J. Chem. Phys., 131
  • Markland, T.E., Berne, B.J., Unraveling Quantum Mechanical Effects in Water Using Isotopic Fractionation (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 7988-7991
  • Joung, S., Cheatham, T.E., III, Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations (2008) J. Phys. Chem. B, 112, pp. 9020-9041
  • Jensen, K.P., Jorgensen, W.L., Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions (2006) J. Chem. Theory Comput., 2, pp. 1499-1509
  • Peng, T., Chang, T., Sun, X., Nguyen, A.V., Dang, L.X., Development of Ions-TIP4P-Ew Force Fields for Molecular Processes in Bulk and at the Aqueous Interface Using Molecular Simulations (2012) J. Mol. Liq., 173, pp. 47-54
  • Lamoureux, G., Roux, B., Absolute Hydration Free Energy Scale for Alkali and Halide Ions Established from Simulations with a Polarizable Force Field (2006) J. Phys. Chem. B, 110, pp. 3308-3322
  • Yu, H., Whitfield, T.W., Harder, E., Lamoureux, G., Vorobyov, I., Anisimov, V.M., MacKerell, A.D., Jr., Roux, B., Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field (2010) J. Chem. Theory Comput., 6, pp. 774-786
  • Karmakar, A., Chandra, A., Water in Hydration Shell of an Iodide Ion: Structure and Dynamics of Solute-Water Hydrogen Bonds and Vibrational Spectral Diffusion from First-Principles Simulations (2015) J. Phys. Chem. B, 119, pp. 8561-8572
  • Habershon, S., Fanourgakis, G.S., Manolopoulos, D.E., Comparison of Path Integral Molecular Dynamics Methods for the Infrared Absortion Spectrum of Liquid Water (2008) J. Chem. Phys., 129
  • Tuckerman, M., Berne, B.J., Martyna, G.J., Reversible Multiple Time Scale Molecular Dynamics (1992) J. Chem. Phys., 97, pp. 1990-2001
  • Martyna, G.J., Tuckerman, M.E., Tobias, D.J., Klein, M.L., Explicit Reversible Integrators for Extended Systems Dynamics (1996) Mol. Phys., 87, pp. 1117-1157
  • Frenkel, D., Smit, B., (2001) Understanding Molecular Simulation from Algorithms to Applications, , Chapter 7. Academic Press: London
  • Ceriotti, M., Markland, D.E., Efficient Methods and Practical Guidelines for Simulating Isotope Effects (2013) J. Chem. Phys., 138
  • Herman, M.F., Bruskin, J., Berne, B.J., On Path Integral Monte Carlo Simulations (1982) J. Chem. Phys., 76, pp. 5150-5155
  • Liu, J., Andino, R.S., Miller, C.M., Chen, X., Wilkins, D.M., Ceriotti, M., Manolopoulos, D.E., A Surface-Specific Isotope Effect in Mixtures of Light and Heavy Water (2013) J. Phys. Chem. C, 117, pp. 2944-2951
  • Craig, I.R., Manolopoulos, D.E., Quantum Statistics and Classical Mechanics: Real Time Correlation Functions from Ring Polymer Molecular Dynamics (2004) J. Chem. Phys., 121, pp. 3368-3373
  • Rossi, M., Ceriotti, M., Manolopoulos, D.E., How to Remove the Spurious Resonances from Ring Polymer Dynamics (2014) J. Chem. Phys., 140
  • Videla, P.E., Rossky, P.J., Laria, D., Nuclear Quantum Effects on the Structure and the Dynamics of [H2O]8 at Low Temperatures (2013) J. Chem. Phys., 139
  • Tobias, D.J., Jungwirth, P., Parrinello, M., Surface Solvation of Halogen Anions in Water Clusters: An Ab Initio Molecular Dynamics Study of the Cl-(H2O)6 Complex Clusters. The Importance of Charge Transfer (2001) J. Chem. Phys., 114, pp. 7036-7044
  • Jungwirth, P., Tobias, D.J., Ions at the Air/Water Interface (2002) J. Phys. Chem. B, 106, pp. 6361-6373
  • Jungwirth, P., Tobias, D.J., Chloride Anion on Aqueous Clusters, at the Air-Water Interface, and in Liquid Water: Solvent Effects on Cl- Polarizability (2002) J. Phys. Chem. A, 106, pp. 379-383
  • Yoo, S., Lei, Y.A., Zeng, X.C., Effect of Polarizability of Halide Anions on the Ionic Solvation in Water Clusters (2003) J. Chem. Phys., 119, pp. 6083-6091
  • Caleman, C., Hub, J.S., Van Maaren, P.J., Van Der Spoel, D., Atomistic Simulation of Ion Solvation in Water Explains Surface Preference of Halides (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 6838-6842
  • Sugita, Y., Okamoto, Y., Replica-Exchange Molecular Dynamics Method for Protein Folding (1999) Chem. Phys. Lett., 314, pp. 141-151
  • Zhang, W., Wu, C., Duan, Y., Convergence of Replica Exchange Molecular Dynamics (2005) J. Chem. Phys., 123
  • Earl, D.J., Deem, M.W., Parallel Tempering: Theory, Applications, and New Perspectives (2005) Phys. Chem. Chem. Phys., 7, pp. 3910-3916
  • Kone, A., Kofke, D.A., Selection of Temperature Intervals for Parallel-Tempering Simulations (2005) J. Chem. Phys., 122
  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., Equation of State Calculations by Fast Computing Machines (1953) J. Chem. Phys., 21, pp. 1087-1092
  • Vanicek, J., Miller, W.H., Efficient Estimators for Quantum Instanton Evaluation of the Kinetic Isotope Effects: Application to the Intramolecular Hydrogen Transfer in Pentadiene (2007) J. Chem. Phys., 127
  • Greyson, J., The Influence of the Alkali Halides on the Structure of Water (1967) J. Phys. Chem., 71, pp. 2210-2213
  • Kakiuchi, M., Temperature Dependence of Frationation of Hydrogen Isotopes in Aqueous Sodium Chloride Solutions (1994) J. Solution Chem., 23, pp. 1073-1087
  • Kakiuchi, M., Hydrogen Isotope Fractionation in Aqueous Halide Solutions (1997) Z. Naturforsch., A: Phys. Sci., 52, pp. 811-820
  • Oi, T., Morimoto, H., Oxygen and Hydrogen Isotopic Preference in Hydration Spheres of Chloride and Sulfate Ions (2013) Z. Phys. Chem., 227, pp. 807-819
  • Kropman, M.F., Bakker, H.J., Vibrational Relaxation of Liquid Water in Ionic Solvation Shells (2003) Chem. Phys. Lett., 370, pp. 741-746

Citas:

---------- APA ----------
Videla, P.E., Rossky, P.J. & Laria, D. (2015) . Isotopic Preferential Solvation of I- in Low-Temperature Water Nanoclusters. Journal of Physical Chemistry B, 119(35), 11783-11790.
http://dx.doi.org/10.1021/acs.jpcb.5b05561
---------- CHICAGO ----------
Videla, P.E., Rossky, P.J., Laria, D. "Isotopic Preferential Solvation of I- in Low-Temperature Water Nanoclusters" . Journal of Physical Chemistry B 119, no. 35 (2015) : 11783-11790.
http://dx.doi.org/10.1021/acs.jpcb.5b05561
---------- MLA ----------
Videla, P.E., Rossky, P.J., Laria, D. "Isotopic Preferential Solvation of I- in Low-Temperature Water Nanoclusters" . Journal of Physical Chemistry B, vol. 119, no. 35, 2015, pp. 11783-11790.
http://dx.doi.org/10.1021/acs.jpcb.5b05561
---------- VANCOUVER ----------
Videla, P.E., Rossky, P.J., Laria, D. Isotopic Preferential Solvation of I- in Low-Temperature Water Nanoclusters. J Phys Chem B. 2015;119(35):11783-11790.
http://dx.doi.org/10.1021/acs.jpcb.5b05561