Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We have studied 1:1 inclusion complexes of two imidazole-based ionic liquids within β-cyclodextrin: 1-dodecyl-3-methylimidazolium and 1-butyl-3-methylimidazolium. By means of an adaptive biasing force scheme, we obtained the free energy profile along two different pathways, differing in the orientations of the head-to-tail vector with respect to the primary-secondary rim axis. Regarding 1-dodecyl-3-methylimidazolium, we found one minimum energy structure for each pathway, in which the hydrophobic tail remains embedded within the cyclodextrin, while the headgroup lies ∼11-12 Å from one of the rims; the structure where the polar head lies near the primary rim is the most stable. The analysis of the free energy of encapsulation of 1-butyl-3-methylimidazolium shows two minima for each insertion pathway, each of them associated with configurations where the imidazolium head lies close to one of the polar rims. As such, the most stable structure corresponds to one where the hydrophobic tail lies embedded within the cyclodextrin, while its head is localized near the secondary rim. The results are interpreted in terms of a simple model which captures the essential features that control the encapsulation process. A comparison with available experimental data is presented. (Figure Presented). © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Molecular Dynamics Study of Ionic Liquids Complexation within β-Cyclodextrins
Autor:Semino, R.; Rodríguez, J.
Filiación:Departamento de Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Capital Federal, 1428, Argentina
Departmento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Gral. Paz 1499, San Martín, Provincia de Buenos Aires 1650, Argentina
ECyT, UNSAM, Martín de Irigoyen 3100, San Martín, Provincia de Buenos Aires 1650, Argentina
Palabras clave:Free energy; Hydrophobicity; Ionic liquids; Molecular dynamics; Adaptive biasing forces; Beta-cyclodextrin; Encapsulation process; Essential features; Hydrophobic tails; Inclusion complex; Minimum-energy structures; Stable structures; Cyclodextrins; beta cyclodextrin; beta cyclodextrin derivative; ionic liquid; chemistry; conformation; molecular dynamics; thermodynamics; beta-Cyclodextrins; Ionic Liquids; Molecular Conformation; Molecular Dynamics Simulation; Thermodynamics
Año:2015
Volumen:119
Número:14
Página de inicio:4865
Página de fin:4872
DOI: http://dx.doi.org/10.1021/acs.jpcb.5b00909
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
CAS:beta cyclodextrin, 7585-39-9; beta-Cyclodextrins; betadex; Ionic Liquids
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v119_n14_p4865_Semino

Referencias:

  • Larsen, K.L., Large Cyclodextrins (2002) J. Inclusion Phenom., 43, pp. 1-13
  • Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J., A Review on the Use of Cyclodextrins in Foods (2009) Food Hydrocolloids, 23, pp. 1631-1640
  • Pinho, E., Grootveld, M., Soares, G., Henriques, M., Cyclodextrins as Encapsulation Agents for Plant Bioactive Compounds (2014) Carbohydr. Polym., 101, pp. 121-135
  • Mellet, C.O., Fernández, J.M.G., Benito, J.M., Cyclodextrin-based Gene Delivery Systems (2011) Chem. Soc. Rev., 40, pp. 1586-1608
  • Loftsson, T., Duchêne, D., Cyclodextrins and their Pharmaceutical Applications (2007) Int. J. Pharm., 329, pp. 1-11
  • Fraceto, L.F., Grillo, R., Sobarzo-Sánchez, E., Cyclodextrin Inclusion Complexes Loaded in Particles as Drug Carrier Systems (2014) Curr. Top. Med. Chem., 14, pp. 518-525
  • Van De Manakker, F., Vermonden, T., Van Nostrum, C.F., Hennink, W.E., Cyclodextrin-based Polymeric Materials: Synthesis, Properties, and Pharmaceutical/Biomedical Applications (2009) Biomacromolecules, 10, pp. 3157-3175
  • Li, J., Loh, X.J., Cyclodextrin-based Supramolecular Architectures: Syntheses, Structures, and Applications for Drug and Gene Delivery (2008) Adv. Drug Delivery Rev., 60, pp. 1000-1017
  • Crini, G., Morcellet, M., Synthesis and Applications of Adsorbents Containing Cyclodextrins (2002) J. Sep. Sci., 25, pp. 789-813
  • Welton, T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis (1999) Chem. Rev., 99, pp. 2071-2084
  • Cui, Y., Zhao, M., Jiang, Z., Xu, S., Guo, X., Combined Use of Ionic Liquid and Hydroxypropyl-β-Cyclodextrin for the Enantioseparation of Ten Drugs by Capillary Electrophoresis (2013) Chirality, 25, pp. 409-414
  • François, Y., Varenne, A., Juillerat, E., Villemin, D., Gareil, P., Evaluation of Chiral Ionic Liquids as Additives to Cyclodextrins for Enantiomeric Separations by Capillary Electrophoresis (2007) J. Chromatogr. A, 1155, pp. 134-141
  • Wang, B., He, J., Bianchi, V., Shamsi, S.A., Combined Use of Chiral Ionic Liquid and Cyclodextrin for MEKC: Part I. Simultaneous Enantioseparation of Anionic Profens (2009) Electrophoresis, 30, pp. 2812-2819
  • Wang, B., He, J., Bianchi, V., Shamsi, S.A., Combined Use of Chiral Ionic Liquid and CD for MEKC: Part II. Determination of Binding Constants (2009) Electrophoresis, 30, pp. 2820-2828
  • Zhou, Z., Li, X., Chen, X., Hao, X., Synthesis of Ionic Liquids Functionalized β-Cyclodextrin-bonded Chiral Stationary Phases and their Applications in High-Performance Liquid Chromatography (2010) Anal. Chim. Acta, 678, pp. 208-214
  • Huang, K., Zhang, X.T., Armstrong, D.W., Ionic Cyclodextrins in Ionic Liquid Matrices as Chiral Stationary Phases for Gas Chromatography (2010) J. Chromatogr. A, 1217, pp. 5261-5273
  • Amajjahe, S., Chow, S., Munteanu, M., Ritter, H., Pseudopolyanions Based on Poly(NIPAAM-co-β-CyclodextrinMethacrylate) and Ionic Liquids (2008) Angew. Chem., Int. Ed., 47, pp. 3435-3437
  • Amajjahe, S., Ritter, H., Supramolecular Controlled Pseudo-LCST Effects of Cyclodextrin-Complexed Poly(Ionic Liquids) (2008) Macromolecules, 41, pp. 3250-3253
  • Leclercq, L., Schmitzer, A.R., Supramolecular Encapsulation of 1,3-bis(1-adamantyl)imidazolium Chloride by β-Cyclodextrins: Towards Inhibition of C(2)-H/D Exchange (2009) J. Phys. Org. Chem., 22, pp. 91-95
  • Gonsior, N., Hetzer, M., Kulicke, W.M., Ritter, H., First Studies on the Influence of Methylated β-Cyclodextrin on the Rheological Behavior of 1-Ethyl-3-methyl Imidazolium Acetate (2010) J. Phys. Chem. B, 114, pp. 12468-12472
  • Araki, J., Ito, K., Recent Advances in the Preparation of Cyclodextrin-based Polyrotaxanes and Their Applications to Soft Materials (2007) Soft Matter, 3, pp. 1456-1473
  • Shen, X., Chen, Q., Zhang, J., Fu, P., Supramolecular Structures in the Presence of Ionic Liquids (2011) Ionic Liquids: Theory, Properties, New Approaches, pp. 427-482. , Chapter 19. Kokorin, A., Ed.; InTech Europe: Rijeka, Croatia
  • Gao, Y.A., Li, Z.H., Du, J.M., Han, B.X., Li, G.Z., Hou, W.G., Shen, D., Zhang, G.Y., Preparation and Characterization of Inclusion Complexes of β-Cyclodextrin with Ionic Liquid (2005) Chem. - Eur. J., 11, pp. 5875-5880
  • Gao, Y., Zhao, X., Dong, B., Zheng, L., Li, N., Zhang, S., Inclusion Complexes of β-Cyclodextrin with Ionic Liquid Surfactants (2006) J. Phys. Chem. B, 110, pp. 8576-8581
  • He, Y., Chen, Q., Xu, C., Zhang, J., Shen, X., Interaction between Ionic Liquids and β-Cyclodextrin: A Discussion of Association Pattern (2009) J. Phys. Chem. B, 113, pp. 231-238
  • Zhang, J., Shen, X., Multiple Equilibria Interaction Pattern between the Ionic Liquids CnmimPF6 and β-Cyclodextrin in Aqueous Solutions (2011) J. Phys. Chem. B, 115, pp. 11852-11861
  • Zhang, J., Shi, J., Shen, X., Further Understanding of the Multiple Equilibria Interaction Pattern between Ionic Liquid and β-Cyclodextrin (2014) J. Inclusion Phenom. Macrocyclic Chem., 79, pp. 319-327
  • Franćois, Y., Varenne, A., Sirieix-Plenet, J., Gareil, P., Determination of Aqueous Inclusion Complexation Constants and Stoichiometry of Alkyl(methyl)-methylimidazolium-based Ionic Liquid Cations and Neutral Cyclodextrins by Affinity Capillary Electrophoresis (2007) J. Sep. Sci., 30, pp. 751-760
  • Ondo, D., Tkadlecová, M., Dohnal, V., Rak, J., Kvíčala, J., Lehmann, J.K., Heintz, A., Ignatiev, N., Interaction of Ionic Liquids Ions with Natural Cyclodextrins (2011) J. Phys. Chem. B, 115, pp. 10285-10297
  • Lipkowitz, K., Applications of Computational Chemistry to the Study of Cyclodextrins (1998) Chem. Rev., 98, pp. 1829-1873
  • Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable Molecular Dynamics with NAMD (2005) J. Comput. Chem., 26, pp. 1781-1802
  • MacKerell, A.D., Jr., Bashford, D., Bellott, M., Dunbrack, R.L., Jr., Evanseck, J.D., Field, M.J., Fischer, S., Ha, S., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins (1998) J. Phys. Chem. B, 102, pp. 3586-3616
  • Liu, Z., Huan, S., Wang, W., A Refined Force Field for Molecular Simulation of Imidazolium-Based Ionic Liquids (2004) J. Phys. Chem. B, 108, pp. 12978-12989
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J., Impey, R.W., Klein, M.L., Comparison of Simple Potential Functions for Simulating Liquid Water (1983) J. Chem. Phys., 79, pp. 926-935
  • Rodriguez, J., Elola, M.D., Encapsulation of Small Ionic Molecules within α-Cyclodextrins (2009) J. Phys. Chem. B, 113, pp. 1423-1428
  • Rodriguez, J., Semino, R., Laria, D., Building up Nanotubes: Docking of "Janus" Cyclodextrins in Solution (2009) J. Phys. Chem. B, 113, pp. 1241-1244
  • Rodriguez, J., Elola, M.D., Laria, D., Ionic Liquid Aqueous Solutions under Nanoconfinement (2012) J. Phys. Chem. C, 116, pp. 5394-5400
  • Elola, M.D., Rodriguez, J., Structure and Dynamics of Nonionic Surfactants Adsorbed at Vacuum/Ionic Liquid Interfaces (2013) Langmuir, 29, pp. 13379-13387
  • Betzel, C., Saenger, W., Hingerty, B.E., Brown, G., Topography of cyclodextrin inclusion complexes, part 20. Circular and flip-flop hydrogen bonding in β-cyclodextrin undecahydrate: A neutron diffraction study (1984) J. Am. Chem. Soc., 106, pp. 7545-7557
  • Hwang, H., Schatz, G.C., Ratner, M.A., Steered Molecular Dynamics Studies of the Potential of Mean Force of a Na+ or K+ Ion in a Cyclic Peptide Nanotube (2006) J. Phys. Chem. B, 110, pp. 26448-26460
  • Darve, E., Pohorille, A., Calculating Free Energies Using Average Force (2001) J. Chem. Phys., 115, pp. 9169-9183
  • Hénin, J., Chipot, C., Overcoming Free Energy Barriers Using Unconstrained Molecular Dynamics Simulations (2004) J. Chem. Phys., 121, pp. 2904-2914
  • Rodriguez-Gomez, D., Darve, E., Pohorille, A., Assessing the Efficiency of Free Energy Calculation Methods (2004) J. Chem. Phys., 120, pp. 3563-3578
  • Cai, W., Sun, T., Liu, P., Chipot, C., Shao, X., Inclusion Mechanism of Steroid Drugs into β-Cyclodextrins. Insights from Free Energy Calculations (2009) J. Phys. Chem. B, 113, pp. 7836-7843
  • Yu, Y., Chipot, C., Sun, T., Shao, X., Spatial Arrangement of α-Cyclodextrins in a Rotaxane. Insights from Free-Energy Calculations (2008) J. Phys. Chem. B, 112, pp. 5268-5271
  • Yu, Y., Chipot, C., Cai, W., Shao, X., Molecular Dynamics Study of the Inclusion of Cholesterol into Cyclodextrins (2006) J. Phys. Chem. B, 110, pp. 6372-6378
  • He, J., Chipot, C.J., Shao, X., Cai, W., Cyclodextrin-Mediated Recruitment and Delivery of Amphotericin B (2013) J. Phys. Chem. C, 177, pp. 11750-11756
  • Dang, L.X., Kollman, P.A., Free Energy of Association of the 18-Crown-6:K+ Complex inWater: A Molecular Dynamics Simulation (1990) J. Am. Chem. Soc., 112, pp. 5716-5720
  • Yoshimura, Y., Takekiyo, T., Imai, Y., Abe, H., High Pressure Phase Behavior of Two Imidazolium-Based Ionic Liquids, [bmim][BF4] and [bmim][PF6] (2011) Ionic Liquids - Classes and Properties, pp. 171-186. , Handy, S. T., Ed.; InTech Europe.: Rijeka, Croatia
  • Uematsu, M., Franck, E.U., Static Dielectric Constant of Water and Steam (1980) J. Phys. Chem. Ref. Data, 9, pp. 1291-1306
  • Chowdhary, J., Ladanyi, B.M., Hydrogen Bond Dynamics at the Water/Hydrocarbon Interface J. Phys. Chem. B, 13, pp. 4045-4053. , 113

Citas:

---------- APA ----------
Semino, R. & Rodríguez, J. (2015) . Molecular Dynamics Study of Ionic Liquids Complexation within β-Cyclodextrins. Journal of Physical Chemistry B, 119(14), 4865-4872.
http://dx.doi.org/10.1021/acs.jpcb.5b00909
---------- CHICAGO ----------
Semino, R., Rodríguez, J. "Molecular Dynamics Study of Ionic Liquids Complexation within β-Cyclodextrins" . Journal of Physical Chemistry B 119, no. 14 (2015) : 4865-4872.
http://dx.doi.org/10.1021/acs.jpcb.5b00909
---------- MLA ----------
Semino, R., Rodríguez, J. "Molecular Dynamics Study of Ionic Liquids Complexation within β-Cyclodextrins" . Journal of Physical Chemistry B, vol. 119, no. 14, 2015, pp. 4865-4872.
http://dx.doi.org/10.1021/acs.jpcb.5b00909
---------- VANCOUVER ----------
Semino, R., Rodríguez, J. Molecular Dynamics Study of Ionic Liquids Complexation within β-Cyclodextrins. J Phys Chem B. 2015;119(14):4865-4872.
http://dx.doi.org/10.1021/acs.jpcb.5b00909