Artículo

Bustamante, J.P.; Abbruzzetti, S.; Marcelli, A.; Gauto, D.; Boechi, L.; Bonamore, A.; Boffi, A.; Bruno, S.; Feis, A.; Foggi, P.; Estrin, D.A.; Viappiani, C. "Ligand uptake modulation by internal water molecules and hydrophobic cavities in hemoglobins" (2014) Journal of Physical Chemistry B. 118(5):1234-1245
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Internal water molecules play an active role in ligand uptake regulation, since displacement of retained water molecules from protein surfaces or cavities by incoming ligands can promote favorable or disfavorable effects over the global binding process. Detection of these water molecules by X-ray crystallography is difficult given their positional disorder and low occupancy. In this work, we employ a combination of molecular dynamics simulations and ligand rebinding over a broad time range to shed light into the role of water molecules in ligand migration and binding. Computational studies on the unliganded structure of the thermostable truncated hemoglobin from Thermobifida fusca (Tf-trHbO) show that a water molecule is in the vicinity of the iron heme, stabilized by WG8 with the assistance of YCD1, exerting a steric hindrance for binding of an exogenous ligand. Mutation of WG8 to F results in a significantly lower stabilization of this water molecule and in subtle dynamical structural changes that favor ligand binding, as observed experimentally. Water is absent from the fully hydrophobic distal cavity of the triple mutant YB10F-YCD1F-WG8F (3F), due to the lack of residues capable of stabilizing it nearby the heme. In agreement with these effects on the barriers for ligand rebinding, over 97% of the photodissociated ligands are rebound within a few nanoseconds in the 3F mutant case. Our results demonstrate the specific involvement of water molecules in shaping the energetic barriers for ligand migration and binding. © 2014 American Chemical Society.

Registro:

Documento: Artículo
Título:Ligand uptake modulation by internal water molecules and hydrophobic cavities in hemoglobins
Autor:Bustamante, J.P.; Abbruzzetti, S.; Marcelli, A.; Gauto, D.; Boechi, L.; Bonamore, A.; Boffi, A.; Bruno, S.; Feis, A.; Foggi, P.; Estrin, D.A.; Viappiani, C.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Physics and Earth Sciences Macedonio Melloni, University of Parma, IBF-CNR, Parma, Italy
LENS, European Laboratory for Non-linear Spectroscopy, Florence, Italy
Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Istituto Pasteur, Department of Biochemical Sciences, University of Rome la Sapienza, Rome, Italy
Department of Pharmacy, University of Parma, Parma, Italy
Department of Chemistry Ugo Schiff, University of Florence, Florence, Italy
Department of Chemistry, University of Perugia, Perugia, Italy
INO-CNR, Florence, Italy
Palabras clave:Computational studies; Energetic barriers; Exogenous ligands; Hydrophobic cavities; Molecular dynamics simulations; Positional disorder; Thermobifida fusca; Truncated hemoglobins; Hemoglobin; Hydrophobicity; Molecular dynamics; Molecules; Porphyrins; X ray crystallography; Ligands; carbon monoxide; hemoglobin; ligand; truncated hemoglobin; water; article; chemical phenomena; chemistry; kinetics; metabolism; protein binding; protein tertiary structure; thermodynamics; Carbon Monoxide; Hemoglobins; Hydrophobic and Hydrophilic Interactions; Kinetics; Ligands; Protein Binding; Protein Structure, Tertiary; Thermodynamics; Truncated Hemoglobins; Water
Año:2014
Volumen:118
Número:5
Página de inicio:1234
Página de fin:1245
DOI: http://dx.doi.org/10.1021/jp410724z
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
CAS:carbon monoxide, 630-08-0; hemoglobin, 9008-02-0; water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v118_n5_p1234_Bustamante

Referencias:

  • Li, Z., Lazaridis, T., The Effect of Water Displacement on Binding Thermodynamics: Concanavalin A (2005) J. Phys. Chem. B, 109, pp. 662-670
  • Li, Z., Lazaridis, T., Thermodynamic Contributions of the Ordered Water Molecule in HIV-1 Protease (2003) J. Am. Chem. Soc., 125, pp. 6636-6637
  • Michel, J., Tirado-Rives, J., Jorgensen, W., Prediction of the Water Content in Protein Binding Sites (2009) J. Phys. Chem. B, 113, pp. 13337-13346
  • Abel, R., Young, T., Farid, R., Berne, B.J., Friesner, R.A., Role of the Active-Site Solvent in the Thermodynamics of Factor Xa Ligand Binding (2008) J. Am. Chem. Soc., 130, pp. 2817-2831
  • Schmidtke, P., Luque, J.F., Murray, J.B., Barril, X., Shielded Hydrogen Bonds as Structural Determinants of Binding Kinetics: Application in Drug Design (2011) J. Chem. Theory Comput., 133, pp. 18903-18910
  • Hummer, G., Molecular Binding: Under Water's Influence (2010) Nat. Chem., 2, pp. 906-907
  • Goldbeck, R.A., Bhaskaran, S., Ortega, C., Mendoza, J.L., Olson, J.S., Soman, J., Kliger, D.S., Esquerra, R.M., Water and Ligand Entry in Myoglobin: Assessing the Speed and Extent of Heme Pocket Hydration after CO Photodissociation (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 1254-1259
  • Baron, R., Setny, P., McCammon, J.A., Water in Cavity-Ligand Recognition (2010) J. Am. Chem. Soc., 132, pp. 12091-12097
  • Baron, R., McCammon, J.A., Dynamics, Hydration, and Motional Averaging of a Loop-Gated Artificial Protein Cavity: The W191G Mutant of Cytochrome c Peroxidase in Water as Revealed by Molecular Dynamics Simulations (2007) Biochemistry, 46, pp. 10629-10642
  • Bonamore, A., Ilari, A., Giangiacomo, L., Bellelli, A., Morea, V., Boffi, A., A Novel Thermostable Hemoglobin from the Actinobacterium Thermobifida fusca (2005) FEBS J., 272, pp. 4189-4201
  • Droghetti, E., Nicoletti, F.P., Bonamore, A., Boechi, L., Arroyo Mañez, P., Estrin, D.A., Boffi, A., Feis, A., Heme Pocket Structural Properties of a Bacterial Truncated Hemoglobin from Thermobifida fusca (2010) Biochemistry, 49, pp. 10394-10402
  • Marcelli, A., Abbruzzetti, S., Bustamante, J.P., Feis, A., Bonamore, A., Boffi, A., Gellini, C., Bruno, S., Following Ligand Migration Pathways from Picoseconds to Milliseconds in Type II Truncated Hemoglobin from Thermobifida fusca (2012) PLoS One, 7, p. 39884
  • Lapini, A., Di Donato, M., Patrizi, B., Marcelli, A., Lima, M., Righini, R., Foggi, P., Boffi, A., Carbon Monoxide Recombination Dynamics in Truncated Hemoglobins Studied with Visible-Pump MidIR-Probe Spectroscopy (2012) J. Phys. Chem. B, 116, pp. 8753-8761
  • Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A., Guertin, M., Truncated Hemoglobins: A New Family of Hemoglobins Widely Distributed in Bacteria, Unicellular Eukaryotes, and Plants (2002) J. Biol. Chem., 277, pp. 871-874
  • Vuletich, D.A., Lecomte, J.T.J., A Phylogenetic and Structural Analysis of Truncated Hemoglobins (2006) J. Mol. Evol., 62, pp. 196-210
  • Nardini, M., Pesce, A., Milani, M., Bolognesi, M., Protein Fold and Structure in the Truncated (2/2) Globin Family (2007) Gene, 398, pp. 2-11
  • Frey, A.D., Kallio, P.T., Nitric Oxide Detoxification - A new Era for Bacterial Globins in Biotechnology (2005) Trends Biotechnol., 23, pp. 69-73
  • Nicoletti, F.P., Comandini, A., Bonamore, A., Boechi, L., Boubeta, F.M., Feis, A., Smulevich, G., Boffi, A., Sulfide Binding Properties of Truncated Hemoglobins (2010) Biochemistry, 49, pp. 2269-2278
  • Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., Theoretical Study of the Truncated Hemoglobin HbN: Exploring the Molecular Basis of the NO Detoxification Mechanism (2005) J. Am. Chem. Soc., 127, pp. 4433-4444
  • Ouellet, H., Ranguelova, K., Labarre, M., Wittenberg, J.B., Wittenberg, B.A., Magliozzo, R.S., Guertin, M., Reaction of Mycobacterium tuberculosis Truncated Hemoglobin O with Hydrogen Peroxide: Evidence for Peroxidatic Activity and Formation of Protein-Based Radicals (2007) J. Biol. Chem., 282, pp. 7491-7503
  • Nicoletti, F.P., Droghetti, E., Boechi, L., Bonamore, A., Sciamanna, N., Estrin, D.A., Feis, A., Smulevich, G., Fluoride as a Probe for H-bonding Interactions in the Active Site of Heme Proteins: The Case of Thermobifida fusca Hemoglobin (2011) J. Am. Chem. Soc., 133, pp. 20970-20980
  • Guallar, V., Lu, C., Borrelli, K., Egawa, T., Yeh, S., Ligand Migration in the Truncated Hemoglobin-II from Mycobacterium tuberculosis: The Role of G8 Tryptophan (2009) J. Biol. Chem., 284, pp. 3106-3116
  • Boechi, L., Martí, M.A., Milani, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Structural Determinants of Ligand Migration in Mycobacterium tuberculosis Truncated Hemoglobin O (2008) Proteins: Struct., Funct., Genet., 73, pp. 372-379
  • Feis, A., Lapini, A., Catacchio, B., Brogioni, S., Foggi, P., Chiancone, E., Boffi, A., Smulevich, G., Unusually Strong H-Bonding to the Heme Ligand and Fast Geminate Recombination Dynamics of the Carbon Monoxide Complex of Bacillus subtilis Truncated Hemoglobin (2008) Biochemistry, 47, pp. 902-910
  • Jasaitis, A., Ouellet, H., Lambry, J.C., Martin, J.L., Friedman, J.M., Guertin, M., Vos, M.H., Ultrafast Heme-Ligand Recombination in Truncated Hemoglobin HbO from Mycobacterium tuberculosis: A Ligand Cage (2012) Chem. Phys., 396, pp. 10-16
  • Eich, R.F., Li, T., Lemon, D.D., Doherty, D.H., Curry, S.R., Aitken, J.F., Mathews, A.J., Phillips, G.N., Mechanism of NO-Induced Oxidation of Myoglobin and Hemoglobin (1996) Biochemistry, 35, pp. 6976-6983
  • Ouellet, Y.H., Daigle, R., Lagüe, P., Dantsker, D., Milani, M., Bolognesi, M., Friedman, J.M., Guertin, M., Ligand Binding to Truncated Hemoglobin N from Mycobacterium tuberculosis is Strongly Modulated by the Interplay between the Distal Heme Pocket Residues and Internal Water (2008) J. Biol. Chem., 283, pp. 27270-27278
  • Abbruzzetti, S., Spyrakis, F., Bidon-Chanal, A., Luque, F.J., Viappiani, C., Ligand Migration Through Hemeprotein Cavities: Insights from Laser Flash Photolysis and Molecular Dynamics Simulations (2013) Phys. Chem. Chem. Phys., 15, pp. 10686-10701
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham III, T.E., Debolt, S., Ferguson, D., Kollman, P., AMBER, a Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the Structural and Energetic Properties of Molecules (1995) Comput. Phys. Commun., 91, pp. 1-41
  • Wang, J., Cieplak, P., Kollman, P.A., How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules? (2000) J. Comput. Chem., 21, pp. 1049-1074
  • Marti, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation (2008) Methods Enzymol., 437, pp. 477-498
  • Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., Dioxygen Affinity in Heme Proteins Investigated by Computer Simulation (2006) J. Inorg. Biochem., 100, pp. 761-770
  • Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., González Lebrero, M.C., Perissinotti, L.L., Modeling Heme Proteins Using Atomistic Simulations (2006) Phys. Chem. Chem. Phys., 8, pp. 5611-5628
  • Forti, F., Boechi, L., Bikiel, D., Martí, M.A., Nardini, M., Bolognesi, M., Viappiani, C., Luque, F.J., Ligand Migration in Methanosarcina acetivorans Protoglobin: Effects of Ligand Binding and Dimeric Assembly (2011) J. Phys. Chem. B, 115, pp. 13771-13780
  • Capece, L., Lewis-Ballester, A., Marti, M.A., Estrin, D.A., Yeh, S.R., Molecular Basis for the Substrate Stereoselectivity in Tryptophan Dioxygenase (2011) Biochemistry, 50, pp. 10910-10918
  • Arroyo Mañez, P., Lu, C., Boechi, L., Martí, M.A., Shepherd, M., Wilson, J.L., Poole, R.K., Estrin, D.A., Role of the Distal Hydrogen-Bonding Network in Regulating Oxygen Affinity in the Truncated Hemoglobin III from Campylobacter jejuni (2011) Biochemistry, 50, pp. 3946-3956
  • Giordano, D., Boechi, L., Samuni, U., Vergara, A., Martí, M.A., Estrin, D.A., Friedman, J.M., Grassi, L., The Hemoglobins of the Sub-Antarctic Fish Cottoperca gobio, a Phyletically Basal Species - Oxygen-Binding Equilibria, Kinetics and Molecular Dynamics (2009) FEBS J., 276, pp. 2266-2277
  • Perissinotti, L.L., Marti, M.A., Doctorovich, F., Luque, F.J., Estrin, D.A., A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion (2008) Biochemistry, 47, pp. 9793-9802
  • Cohen, J., Olsen, K.W., Schulten, K., Finding Gas Migration Pathways in Proteins Using Implicit Ligand Sampling (2008) Methods Enzymol., 437, pp. 439-457
  • Forti, F., Boechi, L., Estrin, D.A., Marti, M.A., Comparing and Combining Implicit Ligand Sampling with Multiple Steered Molecular Dynamics to Study Ligand Migration Processes in Heme Proteins (2011) J. Comput. Chem., 32, pp. 2219-2231
  • Durrant, J.D., De Oliveira, C.A.F., McCammon, J.A., POVME: An Algorithm for Measuring Binding-Pocket Volumes (2011) J. Mol. Graphics Modell., 29, pp. 773-776
  • Di Lella, S., Martí, M.A., Alvarez, R.M.S., Estrin, D.A., Ricci, J.C.D., Characterization of the Galectin-1 Carbohydrate Recognition Domain in Terms of Solvent Occupancy (2007) J. Phys. Chem. B, 111, pp. 7360-7366
  • Gauto, D.F., Di Lella, S., Guardia, C.M.A., Estrin, D.A., Martí, M.A., Carbohydrate-Binding Proteins: Dissecting Ligand Structures through Solvent Environment Occupancy (2009) J. Phys. Chem. B, 113, pp. 8717-8724
  • Gauto, D.F., Di Lella, S., Estrin, D.A., Martí, M.A., Structural Basis for Ligand Recognition in a Mushroom Lectin: Solvent Structure as Specificity Predictor (2011) Carbohydr. Res., 346, pp. 939-948
  • Marcelli, A., Foggi, P., Moroni, L., Gellini, C., Salvi, P.R., Excited-State Absorption and Ultrafast Relaxation Dynamics of Porphyrin, Diprotonated Porphyrin, and Tetraoxaporphyrin Dication (2008) J. Phys. Chem. A, 112, pp. 1864-1872
  • Foggi, P., Neuwahl, F.V.R., Moroni, L., Salvi, P.R., S1 → Sn and S2 → Sn Absorption of Azulene: Femtosecond Transient Spectra and Excited State Calculations (2003) J. Phys. Chem. A, 107, pp. 1689-1696
  • Van Wilderen, L.J.G.W., Lincoln, C.N., Van Thor, J.J., Modelling Multi-Pulse Population Dynamics from Ultrafast Spectroscopy (2011) PLoS One, 6, p. 17373
  • Abbruzzetti, S., Bruno, S., Faggiano, S., Grandi, E., Mozzarelli, A., Viappiani, C., Time-Resolved Methods in Biophysics. 2. Monitoring Haem Proteins at Work with Nanosecond Laser Flash Photolysis (2006) Photochem. Photobiol. Sci., 5, pp. 1109-1120
  • Henry, E.R., Hofrichter, J., Singular Value Decomposition: Application to Analysis of Experimental Data (1992) Methods Enzymol., 210, pp. 129-192
  • Jones, C.M., Ansari, A., Henry, E.R., Christoph, G.W., Hofrichter, J., Eaton, W.A., Speed of Intersubunit Communication in Proteins (1992) Biochemistry, 31, pp. 6692-6702
  • Ye, X., Demidov, A., Champion, P.M., Measurements of the Photodissociation Quantum Yields of MbNO and MbO 2 and the Vibrational Relaxation of the Six-Coordinate Heme Species (2002) J. Am. Chem. Soc., 124, pp. 5914-5924
  • Nicoletti, F.P., Droghetti, E., Howes, B.D., Bustamante, J.P., Bonamore, A., Sciamanna, N., Estrin, D.A., Smulevich, G., H-bonding Networks of the Distal Residues and Water Molecules in the Active Site of Thermobifida fusca Hemoglobin (2013) Biochim. Biophys. Acta, Proteins Proteomics, 1834, pp. 1901-1909
  • Perutz, M.F., Mathews, F.S., An X-ray Study of Azide Methaemoglobin (1966) J. Mol. Biol., 21, pp. 199-202
  • Scott, E.E., Gibson, Q.H., Olson, J.S., Mapping the Pathways for O2 Entry into and Exit from Myoglobin (2011) J. Biol. Chem., 276, pp. 5177-5188
  • Goldbeck, R.A., Pillsbury, M.L., Jensen, R.A., Mendoza, J.L., Nguyen, R.L., Olson, J.S., Soman, J., Esquerra, R.M., Optical Detection of Disordered Water within a Protein Cavity (2009) J. Am. Chem. Soc., 131, pp. 12265-12272
  • Borrelli, K.W., Vitalis, A., Alcantara, R., Guallar, V., PELE: Protein Energy Landscape Exploration. A Novel Monte Carlo Based Technique (2005) J. Chem. Theory Comput., pp. 1304-1311
  • Cohen, J., Arkhipov, A., Braun, R., Schulten, K., Imaging the Migration Pathways for O2, CO, NO, and Xe inside Myoglobin (2006) Biophys. J., 91, pp. 1844-1857
  • Spyrakis, F., Luque, F.J., Viappiani, C., Structural Analysis in Nonsymbiotic Hemoglobins: What Can We Learn from Inner Cavities? (2011) Plant Sci., 181, pp. 8-13
  • Lucas, M.F., Guallar, V., An Atomistic View on Human Hemoglobin Carbon Monoxide Migration Processes (2012) Biophys. J., 102, pp. 887-896

Citas:

---------- APA ----------
Bustamante, J.P., Abbruzzetti, S., Marcelli, A., Gauto, D., Boechi, L., Bonamore, A., Boffi, A.,..., Viappiani, C. (2014) . Ligand uptake modulation by internal water molecules and hydrophobic cavities in hemoglobins. Journal of Physical Chemistry B, 118(5), 1234-1245.
http://dx.doi.org/10.1021/jp410724z
---------- CHICAGO ----------
Bustamante, J.P., Abbruzzetti, S., Marcelli, A., Gauto, D., Boechi, L., Bonamore, A., et al. "Ligand uptake modulation by internal water molecules and hydrophobic cavities in hemoglobins" . Journal of Physical Chemistry B 118, no. 5 (2014) : 1234-1245.
http://dx.doi.org/10.1021/jp410724z
---------- MLA ----------
Bustamante, J.P., Abbruzzetti, S., Marcelli, A., Gauto, D., Boechi, L., Bonamore, A., et al. "Ligand uptake modulation by internal water molecules and hydrophobic cavities in hemoglobins" . Journal of Physical Chemistry B, vol. 118, no. 5, 2014, pp. 1234-1245.
http://dx.doi.org/10.1021/jp410724z
---------- VANCOUVER ----------
Bustamante, J.P., Abbruzzetti, S., Marcelli, A., Gauto, D., Boechi, L., Bonamore, A., et al. Ligand uptake modulation by internal water molecules and hydrophobic cavities in hemoglobins. J Phys Chem B. 2014;118(5):1234-1245.
http://dx.doi.org/10.1021/jp410724z