Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The filling of slits with identical planar walls is investigated in the frame of the density functional theory. For this kind of slit, the confining potential is symmetric with respect to its central plane. Closed and open systems are studied by applying, respectively, the canonical and grand canonical ensembles (CE and GCE). Results obtained for the confinement of fluid Ne by alkaline surfaces are reported. The behavior of these systems is analyzed by varying the strength of the Ne-substrate attraction, the temperature T, and the coverage Γl. It is assumed that the one-body density of the fluid, ρ(r), is uniform along the (x, y) planes parallel to the walls, becoming a function of the coordinate z perpendicular to those planes. Two sorts of solutions are found for the density profile: (i) symmetric ones that follow the left-right symmetry of the potential exerted by the walls and (ii) asymmetric ones that break the symmetry of the slit. The pores are wide enough for determining prewetting (PW) lines and wetting and critical PW temperatures, i.e., Tw and Tcpw, from the analysis of symmetric solutions provided by both the CE and GCE schemes. Asymmetric species are examined in detail for T > Tw. It is shown that for a given Ne-substrate pair at a fixed T both the CE and GCE frames yield only one asymmetric 2-fold degenerate stable profile (formed by a "thin" wetting film at one wall and a "thick" wetting film at the other) coexisting with two symmetric profiles (formed by "thin" or "thick" wetting films at the two walls), while the remaining asymmetric states are at best metastable. This feature occurs along PW lines and disappears at Tcpw. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Asymmetric profiles and prewetting lines in the filling of planar slits with Ne
Autor:Sartarelli, S.A.; Szybisz, L.
Filiación:Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, Gutierrez 1150, RA-1663 San Miguel, Argentina
Laboratorio TANDAR, Departamento de Física, Comisión Nacional de Energía Atómica, Av. del Libertador 8250, RA-1429 Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, RA-1428 Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, RA-1033 Buenos Aires, Argentina
Palabras clave:Density functional theory; Wetting; Asymmetric profile; Asymmetric state; Density profile; Grand canonical ensemble; Left-right symmetry; Planar walls; Symmetric solution; Wetting films; Wall function
Año:2013
Volumen:117
Número:20
Página de inicio:6256
Página de fin:6268
DOI: http://dx.doi.org/10.1021/jp4000895
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v117_n20_p6256_Sartarelli

Referencias:

  • De Gennes, P.G., Wetting: Statics and Dynamics (1985) Rev. Mod. Phys., 57, pp. 827-863
  • Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E., Wetting and Spreading (2009) Rev. Mod. Phys., 81, pp. 739-805
  • Squires, T.M., Quake, S.R., Microfluidics: Fluid Physics at the Nanoliter Scale (2005) Rev. Mod. Phys., 77, pp. 977-1026
  • Pandit, R., Schick, M., Wortis, M., Systematics of Multilayer Adsorption Phenomena on Atttractive Substrates (1982) Phys. Rev. B, 26, pp. 5112-5140
  • Pandit, R., Fisher, M.E., Wetting Transitions near Bulk Triple Points (1983) Phys. Rev. Lett., 51, pp. 1772-1775
  • Sikkenk, J.H., Indekeu, J.O., Van Leeuwen, J.M.J., Vossnack, E.O., Molecular-Dynamics Simulation of Wetting and Drying at Solid-Fluid Interfaces (1987) Phys. Rev. Lett., 59, pp. 98-101
  • Sikkenk, J.H., Indekeu, J.O., Van Leeuwen, J.M.J., Vossnack, E.O., Bakker, A.F., Simulation of Wetting and Drying at Solid-Fluid Interfaces on the Delft Molecular Dynamics Processor (1988) J. Stat. Phys., 52, pp. 23-44
  • Tang, J.Z., Harris, J.G., Fluid Wetting on Molecularly Rough Surfaces (1995) J. Chem. Phys., 103, pp. 8201-8208
  • Merkel, M., Löwen, H., Symmetry-Breaking Density Profiles in Confined Liquids (1996) Phys. Rev. e, 54, pp. 6623-6632
  • Berim, G.O., Ruckenstein, E., Fluid Density Profile and Symmetry Breaking in a Closed Nanoslit (2007) J. Phys. Chem. B, 111, pp. 2514-2522
  • Tarazona, P., Free-Energy Density Functional for Hard Spheres (1985) Phys. Rev. A, 31, pp. 2672-2679
  • , 32, p. 3148. , (erratum); Berim, G.O., Ruckenstein, E., Symmetry Breaking of the Fluid Density Profiles in Closed Nanoslits (2007) J. Chem. Phys., 126, pp. 1245031-1245039
  • Szybisz, L., Sartarelli, S.A., Density Profiles of Ar Adsorbed in Slits of CO2: Spontaneous Symmetry Breaking Revisited (2008) J. Chem. Phys., 128, pp. 1247021-1247028
  • Sartarelli, S.A., Szybisz, L., Correlation between Asymmetric Profiles in Slits and Standard Prewetting Lines (2008) Pap. Phys., 1, pp. 0100011-0100019. , http://arxiv.org/abs/0909.2244, (also at)
  • Sartarelli, S.A., Szybisz, L., Urrutia, I., Spontaneous Symmetry Breaking and First-Order Phase Transitions of Adsorbed Fluids (2010) Int. J. Bifurcation Chaos, 20, pp. 287-294
  • Sartarelli, S.A., Szybisz, L., Confinement of Ar between Two Identical Parallel Semi-Infinite Walls (2010) J. Chem. Phys., 132, pp. 0647011-0647018
  • Berim, G.O., Ruckenstein, E., Symmetry Breaking of the Density Distribution of a Quantum Fluid in a Nanoslit (2009) J. Chem. Phys., 131, pp. 1847071-1847077
  • Mayol, R., Ancilotto, F., Barranco, M., Hernández, E.S., Pi, M., Novel Aspects of Wedge Filling by Liquid Helium (2007) J. Low Temp. Phys., 148, pp. 851-855
  • Berim, G.O., Ruckenstein, E., Two-Dimensional Symmetry Breaking of Fluid Density Distribution in Closed Nanoslits (2008) J. Chem. Phys., 128, pp. 0247041-0247047
  • Rzysko, W., Patrykiejew, A., Sokołowski, S., Nucleation of Fluids confined between Parallel Walls: A Lattice Monte Carlo Study (2008) Phys. Rev. e, 77, pp. 0616021-0616026
  • Edison, J.R., Monson, P.A., Modeling Relaxation Processes for Fluids in Porous Materials Using Dynamic Mean Field Theory: An Application to Partial Wetting (2009) J. Low Temp. Phys., 157, pp. 395-409
  • Ancilotto, F., Toigo, F., Prewetting Transitions of Ar and Ne on Alkali-Metal Surfaces (1999) Phys. Rev. B, 60, pp. 9019-9025
  • Ancilotto, F., Curtarolo, S., Toigo, F., Cole, M.W., Evidence Concerning Drying Behavior of Ne near a Cs Surface (2001) Phys. Rev. Lett., 87, pp. 2061031-2061034
  • Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V., Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms (2000) Langmuir, 16, pp. 2311-2320
  • Ravikovitch, P.I., Vishnyakov, A., Neimark, A.V., Density Functional Theories and Molecular Simulations of Adsorption and Phase Transitions in Nanopores (2001) Phys. Rev. e, 64, pp. 0116021-01160220
  • Zeng, M., Tang, Y., Mi, J., Zhong, C., Improved Direct Correlation Function for Density Functional Theory Analysis of Pore Size Distributions (2009) J. Phys. Chem. C, 113, pp. 17428-17436
  • Szybisz, L., Sartarelli, S.A., Full Correspondence between Asymmetric Filling of Slits and First-Order Phase Transition Lines (2011) AIP Adv., 1, pp. 0421461-04214617
  • Rosenfeld, Y., Free-Energy Model for the Inhomogeneous Hard-Sphere Fluid Mixture and Density-Functional Theory of Freezing (1989) Phys. Rev. Lett., 63, pp. 980-983
  • Kierlik, E., Rosinberg, M.L., Free-Energy Density Functional for Inhomogeneous Hard-Sphere Fluid: Application to Interfacial Adsorption (1990) Phys. Rev. A, 42, pp. 3382-3387
  • Sartarelli, S.A., Szybisz, L., Urrutia, I., Adsorption of Ne on Alkali Surfaces Studied with a Density Functional Theory (2009) Phys. Rev. e, 79, pp. 0116031-0116038
  • Sartarelli, S.A., Szybisz, L., Adsorption of Ar on Planar Surfaces Studied with a Density Functional Theory (2009) Phys. Rev. e, 80, pp. 0526021-0526024
  • Evans, R., Density Functionals in the Theory of Nonuniform Fluids (1992) Fundamentals of Inhomogeneous Fluids, , Henderson, D. Decker: New York, Chapter 3
  • Hohenberg, P., Kohn, W., Inhomogeneous Electron Gas (1964) Phys. Rev., 136, pp. 864-B871
  • Roth, R., Evans, R., Lang, A., Kahl, G., Fundamental Measure Theory for Hard-Sphere Mixture Revisited: The White Bear Version (2002) J. Phys.: Condens. Matter, 14, pp. 12063-12078
  • Mansoori, G.A., Carnahan, N.F., Starling, K.E., Leland Jr., T.W., Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres (1971) J. Chem. Phys., 54, pp. 1523-1525
  • Weeks, J.D., Chandler, D., Andersen, H.C., Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids (1971) J. Chem. Phys., 54, pp. 5237-5247
  • Lemmon, E.W., McLinden, M.O., Friend, D.G., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, , http://webbook.nist.gov, Linstrom, P. J. Mallard, W. G. National Institute of Standards and Technology: Gaithersburg, MD
  • Rabinovich, V.A., Vasserman, A.A., Nedostup, V.I., Veksler, L.S., (1988) Thermophysical Properties of Neon, Argon, Krypton, and Xenon, , Hemisphere: Washington, DC
  • Hansen, J.-P., McDonald, I.R., (2006) Theory of Simple Fluids, p. 304. , Elsevier: Amsterdam, The Netherlands
  • Sokołowski, S., Stecki, J., Second Surface Virial Coefficient for Argon Adsorbed on Graphite (1981) J. Phys. Chem., 85, pp. 1741-1746
  • Guggenheim, E.A., The Principle of Corresponding States (1945) J. Chem. Phys., 13, pp. 253-261
  • Chizmeshya, A., Cole, M.W., Zaremba, E., Weak Biding Potentials and Wetting Transitions (1998) J. Low Temp. Phys., 110, pp. 677-682
  • Sinanoǧlu, O., Pitzer, K.S., Interactions between Molecules Adsorbed on a Surface (1960) J. Chem. Phys., 32, pp. 1279-1288
  • Bruch, L.W., Cole, M.W., Zaremba, E., (1997) Physical Adsorption: Forces and Phenomena, , Clarendon Press: Oxford, U.K. Chapter 2.3.2.2
  • Szybisz, L., Ristig, M.L., New Method of Solving the Optimized Paired-Phonon Analysis Equations and Stability of Thin Films of Liquid 4He at T = 0 K (1989) Phys. Rev. B, 40, pp. 4391-4404
  • Clements, B.E., Krotscheck, E., Lauter, H.J., Growth Instability in Helium Films (1993) Phys. Rev. Lett., 70, pp. 1287-1290
  • Saslow, W.M., Agnolet, G., Campbell, C.E., Clements, B.E., Krotscheck, E., Theory of First-Order Layering Transitions in Thin Helium Films (1996) Phys. Rev. B, 54, pp. 6532-6538
  • Szybisz, L., Confirmation Using Monte Carlo Ground-State Energies of the Instability of Free Planar Films of Liquid 4He at T = 0 K (1998) Phys. Rev. B, 58, pp. 109-112
  • White, J.A., González, A., Román, F.L., Velasco, S., Density-Functional Theory of Inhomogeneous Fluids in the Canonical Ensemble (2000) Phys. Rev. Lett., 84, pp. 1220-1223
  • Huang, K., (1963) Statistical Mechanics, , Wiley: New York, Chapter 2
  • Debenedetti, P.G., (1996) Metastable Liquids: Concepts and Principles, , Princeton University Press: Princeton, NJ, Chapter 2
  • Evans, R., Fluids Adsorbed in Narrow Pores: Phase Equilibria and Structure (1990) J. Phys.: Condens. Matter, 2, pp. 8989-9007
  • Amarasekera, G., Scarlett, M.J., Mainwaring, D.E., High-Resolution Adsorption Isotherms of Microporous Solids (1996) J. Phys. Chem., 100, pp. 7580-7585
  • Everett, D., Thermodynamic Stability in Dispersive Systems (1998) Colloids Surf., A, 141, pp. 279-286
  • Nicolaides, D., Evans, R., Monte Carlo Study of Phase Transitions in a Confined Lattice Gas (1989) Phys. Rev. B, 39, pp. 9336-9342
  • Neimark, A.V., Ravikovitch, P.I., Vishnyakov, A., Inside the Hysteresis Loop: Multiplicity of Internal States in Confined Fluids (2002) Phys. Rev. e, 65, pp. 0315051-0315056
  • Saam, W.F., Wetting, Capillary and More (2009) J. Low Temp. Phys., 157, pp. 77-100
  • Curtarolo, S., Stan, G., Bojan, M.J., Cole, M.W., Steele, W.A., Threshold Criterion for Wetting at the Triple Point (2000) Phys. Rev. e, 61, pp. 1670-1675
  • Hess, G.B., Sabatini, M.J., Chan, M.H.W., Nonwetting of Cesium by Neon near Its Critical Point (1997) Phys. Rev. Lett., 78, pp. 1739-1742
  • Ancilotto, F., Barranco, M., Hernández, E.S., Pi, M., Helium in Nanoconfinement: Interplay between Geometry and Wetting Behavior (2009) J. Low Temp. Phys., 157, pp. 174-205

Citas:

---------- APA ----------
Sartarelli, S.A. & Szybisz, L. (2013) . Asymmetric profiles and prewetting lines in the filling of planar slits with Ne. Journal of Physical Chemistry B, 117(20), 6256-6268.
http://dx.doi.org/10.1021/jp4000895
---------- CHICAGO ----------
Sartarelli, S.A., Szybisz, L. "Asymmetric profiles and prewetting lines in the filling of planar slits with Ne" . Journal of Physical Chemistry B 117, no. 20 (2013) : 6256-6268.
http://dx.doi.org/10.1021/jp4000895
---------- MLA ----------
Sartarelli, S.A., Szybisz, L. "Asymmetric profiles and prewetting lines in the filling of planar slits with Ne" . Journal of Physical Chemistry B, vol. 117, no. 20, 2013, pp. 6256-6268.
http://dx.doi.org/10.1021/jp4000895
---------- VANCOUVER ----------
Sartarelli, S.A., Szybisz, L. Asymmetric profiles and prewetting lines in the filling of planar slits with Ne. J Phys Chem B. 2013;117(20):6256-6268.
http://dx.doi.org/10.1021/jp4000895