Artículo

Alvarez-Paggi, D.; Meister, W.; Kuhlmann, U.; Weidinger, I.; Tenger, K.; Zimányi, L.; Rákhely, G.; Hildebrandt, P.; Murgida, D.H. "Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation" (2013) Journal of Physical Chemistry B. 117(20):6061-6068
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nonexponential distance dependence of the apparent electron-transfer (ET) rate has been reported for a variety of redox proteins immobilized on biocompatible electrodes, thus posing a physicochemical challenge of possible physiological relevance. We have recently proposed that this behavior may arise not only from the structural and dynamical complexity of the redox proteins but also from their interplay with strong electric fields present in the experimental setups and in vivo (J. Am Chem. Soc. 2010, 132, 5769-5778). Therefore, protein dynamics are finely controlled by the energetics of both specific contacts and the interaction between the protein's dipole moment and the interfacial electric fields. In turn, protein dynamics may govern electron-transfer kinetics through reorientation from low to high donor-acceptor electronic coupling orientations. Here we present a combined computational and experimental study of WT cytochrome c and the surface mutant K87C adsorbed on electrodes coated with self-assembled monolayers (SAMs) of varying thickness (i.e., variable strength of the interfacial electric field). Replacement of the positively charged K87 by a neutral amino acid allowed us to disentangle protein dynamics and electron tunneling from the reaction kinetics and to rationalize the anomalous distance dependence in terms of (at least) two populations of distinct average electronic couplings. Thus, it was possible to recover the exponential distance dependence expected from ET theory. These results pave the way for gaining further insight into the parameters that control protein electron transfer. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation
Autor:Alvarez-Paggi, D.; Meister, W.; Kuhlmann, U.; Weidinger, I.; Tenger, K.; Zimányi, L.; Rákhely, G.; Hildebrandt, P.; Murgida, D.H.
Filiación:INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, piso 3, C1428EHA-Buenos Aires, Argentina
Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. PC14, D-10623-Berlin, Germany
Biological Research Center, Institute of Biophysics, Temesvári krt. 62, H-6726 Szeged, Hungary
Department of Biotechnology, University of Szeged, Közép fasor 52, H-6726, Hungary
Palabras clave:Amino acids; Dynamics; Electric fields; Electrodes; Electron tunneling; Reaction kinetics; Self assembled monolayers; Dynamical complexity; Electron transfer; Electron transfer kinetics; Electronic coupling; Experimental studies; Positively charged; Strong electric fields; Varying thickness; Proteins
Año:2013
Volumen:117
Número:20
Página de inicio:6061
Página de fin:6068
DOI: http://dx.doi.org/10.1021/jp400832m
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v117_n20_p6061_AlvarezPaggi

Referencias:

  • (2010) J. Am Chem. Soc., 132, p. 5769. , 5778
  • Gray, H.B., Winkler, J.R., Electron Transfer in Proteins (1996) Annu. Rev. Biochem., 65, pp. 537-561
  • Avila, A., Gregory, B.W., Niki, K., Cotton, T.M., An Electrochemical Approach to Investigate Gated Electron Transfer Using a Physiological Model System: Cytochrome c Immobilized on Carboxylic Acid-terminated Alkanethiol Self-assembled Monolayers on Gold Electrodes (2000) J. Phys. Chem. B, 104, pp. 2759-2766
  • Chi, Q.J., Zhang, J.D., Andersen, J.E.T., Ulstrup, J., Ordered Assembly and Controlled Electron Transfer of the Blue Copper Protein Azurin at Gold (111) Single-Crystal Substrates (2001) J. Phys. Chem. B, 105, pp. 4669-4679
  • Davis, K.L., Waldeck, D.H., Effect of Deuterium Substitution on Electron Transfer at Cytochrome-SAM interfaces (2008) J. Phys. Chem. B, 112, pp. 12498-12507
  • El Kasmi, A., Wallace, J.M., Bowden, E.F., Binet, S.M., Linderman, R.J., Controlling Interfacial Electron-Transfer Kinetics of Cytochrome c with Mixed Self-assembled Monolayers (1998) J. Am. Chem. Soc., 120, pp. 225-226
  • Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., Direct Observation of the Gating Step in Protein Electron Transfer: Electric-field-controlled Protein Dynamics (2008) J. Am. Chem. Soc., 130, pp. 9844-9848
  • Molinas, M.F., De Candia, A., Szajnman, S.H., Rodríguez, J.B., Martí, M., Pereira, M., Teixeira, M., Murgida, D.H., Electron Transfer Dynamics of Rhodothermus marinus caa 3 Cytochrome c Domains on Biomimetic Films (2011) Phys. Chem. Chem. Phys., 13 (40), pp. 18088-18098
  • Murgida, D.H., Hildebrandt, P., Proton-Coupled Electron Transfer of Cytochrome c (2001) J. Am. Chem. Soc., 123, pp. 4062-4068
  • Niki, K., Hardy, W.R., Hill, M.G., Li, H., Sprinkle, J.R., Margoliash, E., Fujita, K., Gray, H.B., Coupling to Lysine-13 Promotes Electron Tunneling Through Carboxylate-terminated Alkanethiol Self-assembled Monolayers to Cytochrome c (2003) J. Phys. Chem. B, 107, pp. 9947-9949
  • Wei, J.J., Liu, H.Y., Khoshtariya, D.E., Yamamoto, H., Dick, A., Waldeck, D.H., Electron-transfer Dynamics of Cytochrome c: A Change in the Reaction Mechanism with Distance (2002) Angew. Chem., Int. Ed., 41 (24), pp. 4700-4703
  • Xu, J.S., Bowden, E.F., Determination of the Orientation of Adsorbed Cytochrome c on Carboxyalkanethiol Self-assembled Monolayers by in situ Differential Modification (2006) J. Am. Chem. Soc., 128, pp. 6813-6822
  • Alvarez Paggi, D., Martin, D.F., De Biase, P.M., Hildebrandt, P., Marti, M.A., Murgida, D.H., Molecular Basis of Coupled Protein and Electron Transfer Dynamics of Cytochrome c in Biomimetic Complexes (2010) J. Am. Chem. Soc., 132, pp. 5769-5778
  • Lange, C., Hunte, C., Crystal Structure of the Yeast Cytochrome bc 1 Complex with its Bound Substrate Cytochrome c (2002) Proc. Natl. Acad. Sci. U.S.A., 99 (5), pp. 2800-2805
  • Pelletier, H., Kraut, J., Crystal Structure of a Complex between Electron Transfer Partners, Cytochrome c Peroxidase and Cytochrome c (1992) Science, 258 (5089), pp. 1748-1755
  • Roberts, V.A., Pique, M.E., Definition of the Interaction Domain for Cytochrome c on Cytochrome c Oxidase. III. Prediction of the Docked Complex by a Complete, Systematic Search (1999) J. Biol. Chem., 274 (53), pp. 38051-38060
  • Lao, K., Franzen, S., Steffen, M., Lambright, D., Stanley, R., Boxer, S.G., Effects of Applied Electric Fields on the Quantum Yields for the Initial Electron Transfer Steps in Bacterial Photosynthesis II. Dynamic Stark Effect (1995) Chem. Phys., 197 (3), pp. 259-275
  • Pudlak, M., Pincak, R., Influence of the Electric Field on the Electron Transport in Photosynthetic Reaction Centers (2011) Eur. Phys. J. e, 34 (3), pp. 1-8
  • Kim, Y.C., Furchtgott, L.A., Hummer, G., Biological Proton Pumping in an Oscillating Electric Field (2009) Phys. Rev. Lett., 103 (26), pp. 268102-268112
  • Abriata, L.A., Álvarez-Paggi, D., Ledesma, G.N., Blackburn, N.J., Vila, A.J., Murgida, D.H., Alternative Ground States Enable Pathway Switching in Biological Electron Transfer (2012) Proc. Natl. Acad. Sci. U.S.A., 109 (43), pp. 17348-17353
  • Feng, J.J., Hildebrandt, P., Murgida, D.H., Silver Nanocoral Structures on Electrodes: A Suitable Platform for Protein-based Bioelectronic Devices (2008) Langmuir, 24, pp. 1583-1586
  • Willner, B., Katz, E., Willner, I., Electrical Contacting of Redox Proteins by Nanotechnological Means (2006) Curr. Opin. Biotechnol., 17 (6), pp. 589-596
  • Tenger, K., Khoroshyy, P., Kovács, K.L., Zimányi, L., Rákhely, G., Improved System for Heterologous Expression of Cytochrome c Mutants in Escherichia coli (2007) Acta Biol. Hung., 58, pp. 23-35
  • Tenger, K., Khoroshyy, P., Rákhely, G., Zimányi, L., Maturation of a Eukaryotic Cytochrome c in the Cytoplasm of Escherichia coli Without the Assistance by a Dedicated Biogenesis Apparatus (2010) J. Bioenerg. Biomembr., 42 (2), pp. 125-133
  • Murgida, D.H., Hildebrandt, P., Heterogeneous Electron Transfer of Cytochrome c on Coated Silver Electrodes. Electric Field Effects on Structure and Redox Potential (2001) J. Phys. Chem. B, 105, pp. 1578-1586
  • Dopner, S., Hildebrandt, P., Mauk, A.G., Lenk, H., Stempfle, W., Analysis of Vibrational Spectra of Multicomponent Systems. Application to pH-dependent Resonance Raman Spectra of Ferricytochrome c (1996) Spectrochim. Acta A, 52 (5), pp. 573-584
  • Bryant, M.A., Pemberton, J.E., Surface Raman Scattering of Self-assembled Monolayers Formed from 1-alkanethiols at Silver Electrodes (1991) J. Am. Chem. Soc., 113, pp. 3629-3637
  • Bushnell, G.W., Louie, G.V., Brayer, G.D., High-resolution Three-dimensional Structure of Horse Heart Cytochrome c (1990) J. Mol. Biol., 214 (2), pp. 585-595
  • Rai, B., Sathish, P., Malhotra, C.P., Pradip, Ayappa, K.G., Molecular Dynamic Simulations of Self-assembled Alkylthiolate Monolayers on an Au(111) Surface (2004) Langmuir, 20, pp. 3138-3144
  • Beratan, D.N., Onuchic, J.N., Winkler, J.R., Gray, H.B., Electron-tunneling Pathways in Proteins (1992) Science, 258 (5089), pp. 1740-1741
  • Koppenol, W.H., Rush, J.D., Mills, J.D., Margoliash, E., The Dipole-moment of Cytochrome c (1991) Mol. Biol. Evol., 8 (4), pp. 545-558
  • Paggi, D.A., Martin, D.F., Kranich, A., Hildebrandt, P., Marti, M.A., Murgida, D.H., Computer Simulation and SERR Detection of Cytochrome c Dynamics at SAM-coated Electrodes (2009) Electrochim. Acta, 54 (22), pp. 4963-4970
  • Murgida, D.H., Hildebrandt, P., Electron-transfer Processes of Cytochrome c at Interfaces. New Insights by Surface-enhanced Resonance Raman Spectroscopy (2004) Acc. Chem. Res., 37, pp. 854-861
  • Wallace, C.J., Proudfoot, A.E., On the Relationship between Oxidation-Reduction Potential and Biological Activity in Cytochrome c Analogues. Results from Four Novel Two-Fragment Complexes (1987) Biochem. J., 245 (3), pp. 773-779
  • Oellerich, S., Wackerbarth, H., Hildebrandt, P., Spectroscopic Characterization of Nonnative Conformational States of Cytochrome c (2002) J. Phys. Chem. B, 106, pp. 6566-6580
  • Getz, E.B., Xiao, M., Chakrabarty, T., Cooke, R., Selvin, P.R., A Comparison between the Sulfhydryl Reductants Tris (2-carboxyethyl) Phosphine and Dithiothreitol for Use in Protein Biochemistry (1999) Anal. Biochem., 273 (1), pp. 73-80
  • Finklea, H.O., Hanshew, D.D., Electron-Transfer Kinetics in Organized Thiol Monolayers with Attached Pentaammine (Pyridine) Ruthenium Redox Centers (1992) J. Am. Chem. Soc., 114, pp. 3173-3181
  • Xu, J., Li, H., Zhang, Y., Relationship between Electronic Tunneling Coefficient and Electrode Potential Investigated by Using Self-assembled Alkanethiol Monolayers on Gold Electrodes (1993) J. Phys. Chem., 97, pp. 11497-11500
  • Smalley, J.F., Feldberg, S.W., Chidsey, C.E.D., Linford, M.R., Newton, M.D., Liu, Y.P., The Kinetics of Electron Transfer through Ferrocene-terminated Alkanethiol Monolayers on Gold (1995) J. Phys. Chem., 99, pp. 13141-13149
  • Smith, C.P., White, H.S., Theory of the Interfacial Potential Distribution and Reversible Voltammetric Response of Electrodes Coated with Electroactive Molecular Films (1992) Anal. Chem., 64, pp. 2398-2405
  • Yue, H.J., Khoshtariya, D., Waldeck, D.H., Grochol, J., Hildebrandt, P., Murgida, D.H., On the Electron Transfer Mechanism between Cytochrome c and Metal Electrodes. Evidence for Dynamic Control at Short Distances (2006) J. Phys. Chem. B, 110, pp. 19906-19913
  • Ly, H.K., Marti, M.A., Martin, D.F., Alvarez-Paggi, D., Meister, W., Kranich, A., Weidinger, I.M., Murgida, D.H., Thermal Fluctuations Determine the Electron-Transfer Rates of Cytochrome c in Electrostatic and Covalent Complexes (2010) ChemPhysChem, 11 (6), pp. 1225-1235

Citas:

---------- APA ----------
Alvarez-Paggi, D., Meister, W., Kuhlmann, U., Weidinger, I., Tenger, K., Zimányi, L., Rákhely, G.,..., Murgida, D.H. (2013) . Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation. Journal of Physical Chemistry B, 117(20), 6061-6068.
http://dx.doi.org/10.1021/jp400832m
---------- CHICAGO ----------
Alvarez-Paggi, D., Meister, W., Kuhlmann, U., Weidinger, I., Tenger, K., Zimányi, L., et al. "Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation" . Journal of Physical Chemistry B 117, no. 20 (2013) : 6061-6068.
http://dx.doi.org/10.1021/jp400832m
---------- MLA ----------
Alvarez-Paggi, D., Meister, W., Kuhlmann, U., Weidinger, I., Tenger, K., Zimányi, L., et al. "Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation" . Journal of Physical Chemistry B, vol. 117, no. 20, 2013, pp. 6061-6068.
http://dx.doi.org/10.1021/jp400832m
---------- VANCOUVER ----------
Alvarez-Paggi, D., Meister, W., Kuhlmann, U., Weidinger, I., Tenger, K., Zimányi, L., et al. Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation. J Phys Chem B. 2013;117(20):6061-6068.
http://dx.doi.org/10.1021/jp400832m