Artículo

González Solveyra, E.; De La Llave, E.; Scherlis, D.A.; Molinero, V. "Melting and crystallization of ice in partially filled nanopores" (2011) Journal of Physical Chemistry B. 115(48):14196-14204
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We investigate the melting and formation of ice in partially filled hydrophilic and hydrophobic nanopores of 3 nm diameter using molecular dynamics simulations with the mW water model. Above the melting temperature, the partially filled nanopores contain two water phases in coexistence: a condensed liquid plug and a surface-adsorbed phase. It has been long debated in the literature whether the surface-adsorbed phase is involved in the crystallization. We find that only the liquid plug crystallizes on cooling, producing ice I with stacks of hexagonal and cubic layers. The confined ice is wetted by a premelted liquid layer that persists in equilibrium with ice down to temperatures well below its melting point. The liquid-ice transition is first-order-like but rounded. We determine the temperature and enthalpy of melting as a function of the filling fraction of the pore. In agreement with experiments, we find that the melting temperature of the nanoconfined ice is strongly depressed with respect to the bulk Tm, it depends weakly on the filling fraction and is insensitive to the hydrophobicity of the pore wall. The state of water in the crystallized hydrophilic and hydrophobic pores, however, is not the same: the hydrophobic pore has a negligible density of the surface-adsorbed phase and higher fraction of water in the ice phase than the hydrophilic pore. The widths of the ice cores are nevertheless comparable for the hydrophobic and hydrophilic pores, and this may explain their almost identical melting temperatures. The enthalpy of melting ΔHm, when normalized by the actual amount of ice in the pore, is indistinguishable for the hydrophobic and hydrophilic pores, insensitive to the filling fraction, and within the error bars, the same as the difference in enthalpy between bulk liquid and bulk ice evaluated at the temperature of melting of ice in the nanopores. © 2011 American Chemical Society.

Registro:

Documento: Artículo
Título:Melting and crystallization of ice in partially filled nanopores
Autor:González Solveyra, E.; De La Llave, E.; Scherlis, D.A.; Molinero, V.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States
Palabras clave:Computer simulation; Enthalpy; Filling; Hydrophilicity; Hydrophobicity; Liquids; Melting point; Metal melting; Molecular dynamics; Nanopores; Phase transitions; Bulk ice; Bulk liquid; Error bars; Filling fractions; Hydrophilic and hydrophobic; Hydrophilic pores; Hydrophobic and hydrophilic; Hydrophobic pore; Ice core; Ice phase; Liquid layer; Liquid plugs; Melting and crystallization; Melting temperatures; Molecular dynamics simulations; Pore wall; Water models; Water phasis; Ice
Año:2011
Volumen:115
Número:48
Página de inicio:14196
Página de fin:14204
DOI: http://dx.doi.org/10.1021/jp205008w
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v115_n48_p14196_GonzalezSolveyra

Referencias:

  • Brovchenko, I., Oleinikova, A., (2008) Interfacial and Confined Water, , Elservier: Amsterdam
  • Findenegg, G., Jähnert, S., Akcakayiran, D., Schreiber, A., (2008) Chemphyschem, 9, p. 2651
  • Jahnert, S., Chavez, F.V., Schaumann, G.E., Schreiber, A., Schonhoff, M., Findenegg, G.H., (2008) Phys. Chem. Chem. Phys., 10, p. 6039
  • Schmidt, R., Hansen, E., Stöcker, M., Akporiaye, D., Ellestad, O., (1995) J. Am. Chem. Soc., 117, p. 4049
  • Schreiber, A., Ketelsen, I., Findenegg, G.H., (2001) Phys. Chem. Chem. Phys., 3, p. 1185
  • Kittaka, S., Ishimaru, S., Kuranishi, M., Matsuda, T., Yamaguchi, T., (2006) Phys. Chem. Chem. Phys., 8, p. 3223
  • Morishige, K., Kawano, K., (1999) J. Chem. Phys., 110, p. 4867
  • Morishige, K., Kawano, K., (1999) J Phys Chem B, 103, p. 7906
  • Pearson, R.T., Derbyshire, W., (1974) J. Colloid Interface Sci., 46, p. 232
  • Hall, P.G., Williams, R.T., Slade, R.C.T., (1985) J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases, 81, p. 847
  • Jelassi, J., Castricum, H.L., Bellissent-Funel, M.-C., Dore, J., Webber, J.B.W., Sridi-Dorbez, R., (2010) Phys. Chem. Chem. Phys., 12, p. 2838
  • Seyed-Yazdi, J., Farman, H., Dore, J.C., Webber, J.B.W., Findenegg, G.H., Hansen, T., (2008) J. Phys.: Condens. Matter, 20, p. 205108
  • Webber, J., Dore, J., Strange, J., Anderson, R., Tohidi, B., (2007) J. Phys.: Condens. Matter, 19, p. 415117
  • Liu, E., Dore, J.C., Webber, J.B.W., Khushalani, D., Jähnert, S., Findenegg, G.H., Hansen, T., (2006) J. Phys.: Condens. Matter, 18, p. 10009
  • Deschamps, J., Audonnet, F., Brodie-Linder, N., Schoeffel, M., Alba-Simionesco, C., (2010) Phys. Chem. Chem. Phys., 12, p. 1440
  • Morishige, K., Iwasaki, H., (2003) Langmuir, 19, p. 2808
  • Jelassi, J., Grosz, T., Bako, I., Bellissent-Funel, M.-C., Dore, J.C., Castricum, H.L., Sridi-Dorbez, R., (2011) J. Chem. Phys., 134, p. 064509
  • Denoyel, R., Pellenq, R., (2002) Langmuir, 18, p. 2710
  • Petrov, O., Furó, I., (2006) Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 73, p. 011608
  • Koga, K., Gao, G.T., Tanaka, H., Zeng, X.C., (2001) Nature, 412, p. 802
  • Koga, K., Gao, G.T., Tanaka, H., Zeng, X.C., (2002) Physica A-Stat. Mech. Its Applications, 314, p. 462
  • Koga, K., Parra, R.D., Tanaka, H., Zeng, X.C., (2000) J. Chem. Phys., 113, p. 5037
  • Koga, K., Tanaka, H., (2005) J. Chem. Phys., 122, p. 104711
  • Koga, K., Zeng, X., Tanaka, H., (1997) Phys. Rev. Lett., 79, p. 5262
  • Bai, J., Zeng, X.C., Koga, K., Tanaka, H., (2003) Mol. Simul., 29, p. 619
  • Koga, K., Tanaka, H., Zeng, X.C., (2000) Nature, 408, p. 564
  • Slovak, J., Tanaka, H., Koga, K., Zeng, X.C., (2003) Physica A-Stat. Mech. Its Applications, 319, p. 163
  • Zangi, R., Mark, A.E., (2003) J. Chem. Phys., 119, p. 1694
  • Giovambattista, N., Rossky, P.J., Debenedetti, P.G., (2009) Phys. Rev. Lett., 102, p. 050603
  • Giovambattista, N., Rossky, P.J., Debenedetti, P.G., (2009) J. Phys. Chem. B, 113, p. 13723
  • Giovambattista, N., Rossky, P.J., Debenedetti, P.G., (2006) Phys. Rev. e, 73, p. 041604
  • Kumar, P., Starr, F.W., Buldyrev, S.V., Stanley, H.E., (2007) Phys. Rev. e, 75, p. 011202
  • Kumar, P., Buldyrev, S.V., Starr, F.W., Giovambattista, N., Stanley, H.E., (2005) Phys. Rev. e, 72, p. 051503
  • Yamada, M., Mossa, S., Stanley, H., Sciortino, F., (2002) Phys. Rev. Lett., 88, p. 195701
  • Kastelowitz, N., Johnston, J.C., Molinero, V., (2010) J. Chem. Phys., 132, p. 124511
  • Johnston, J.C., Kastelowitz, N., Molinero, V., (2010) J. Chem. Phys., 133, p. 154516
  • Bai, J., Angell, C.A., Zeng, X.C., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, p. 5718
  • Han, S., Choi, M.Y., Kumar, P., Stanley, H.E., (2010) Nat. Phys., 6, p. 685
  • Morishige, K., Yasunaga, H., Uematsu, H., (2009) J. Phys. Chem. C, 113, p. 3056
  • Morishige, K., Uematsu, H., (2005) J. Chem. Phys., 122, p. 044711
  • Baker, J.M., Dore, J.C., Behrens, P., (1997) J. Phys. Chem. B, 101, p. 6226
  • Pereyra, R.G., Carignano, M.A., (2009) J. Phys. Chem. C, 113, p. 12699
  • Moore, E.B., De La Llave, E., Welke, K., Scherlis, D.A., Molinero, V., (2010) Phys. Chem. Chem. Phys., 12, p. 4124
  • Molinero, V., Moore, E.B., (2009) J. Phys. Chem. B, 113, p. 4008
  • Moore, E.B., Molinero, V., (2009) J. Chem. Phys., 130, p. 244505
  • Moore, E.B., Molinero, V., (2010) J. Chem. Phys., 132, p. 244504
  • De La Llave, E., Molinero, V., Scherlis, D.A., (2010) J. Chem. Phys., 133, p. 034513
  • Stillinger, F.H., Weber, T.A., (1985) Phys. Rev. B, 31, p. 5262
  • Jacobson, L.C., Hujo, W., Molinero, V., (2009) J. Phys. Chem. B, 113, p. 10298
  • Abascal, J.L.F., Sanz, E., Fernandez, R.G., Vega, C., (2005) J. Chem. Phys., 122, p. 234511
  • Moore, E.B., Allen, J.T., Molinero, V., Liquid-ice Coexistence below the Melting Temperature for Water Confined in Hydrophilic and Hydrophobic Nanopores, , to be submitted
  • Plimpton, S.J., (1995) J. Comput. Phys., 117, p. 1
  • Nelson, M.T., Humphrey, W., Gursoy, A., Dalke, A., Kale, L.V., Skeel, R.D., Schulten, K., (1996) Int. J. High Performance Comput. Appl., 10, p. 251
  • Cooper, S., Nicholson, C., Liu, J., (2008) J. Chem. Phys., 129, p. 124715
  • Liu, J., Nicholson, C.E., Cooper, S.J., (2007) Langmuir, 23, p. 7286
  • Moore, E.B., Molinero, V., Is it cubic? Ice crystallization from deeply supercooled water (2011) Phys. Chem. Chem. Phys., , not supplied
  • Bellissent-Funel, M.-C., Lal, J., Bosio, L., (1993) J. Chem. Phys., 98, p. 4246
  • Petrov, O., Furó, I., (2011) Microporous Mesoporous Mater., 138, p. 221
  • Petrov, O.V., Furó, I., (2009) Prog. Nucl. Magn. Reson. Spectrosc., 54, p. 97
  • Wallacher, D., Knorr, K., (2001) Phys. Rev. B, 63, p. 104202
  • Engemann, S., Reichert, H., Dosch, H., Bilgram, J., Honkimaki, V., Snigirev, A., (2004) Phys. Rev. Lett., 92, p. 205701
  • Parry, A.O., Rascón, C., Morgan, L., (2006) J. Chem. Phys., 124, p. 151101
  • Dash, J.G., Rempel, A.W., Wettlaufer, J.S., (2006) Rev. Mod. Phys., 78, p. 695
  • Morishige, K., Nobuoka, K., (1997) J. Chem. Phys., 107, p. 6965
  • Dash, J.G., Rempel, A.W., Wettlaufer, J.S., The physics of premelted ice and its geophysical consequences (2006) Rev. Mod. Phys., 78, p. 695
  • Stewart, M.C., Evans, R., (2005) Phys. Rev. e, 71, p. 011602
  • Conde, M.M., Vega, C., Tribello, G.A., Slater, B., (2009) J. Chem. Phys., 131, p. 034510
  • Bluhm, H., Ogletree, D.F., Fadley, C.S., Hussain, Z., Salmeron, M., (2002) J. Phys.: Condens. Matter, 14, p. 227
  • Liu, X.X., Wang, Q., Huang, X.F., Yang, S.H., Li, C.X., Niu, X.J., Shi, Q.F., Lu, K.Q., (2010) J. Phys. Chem. B, 114, p. 4145
  • Moore, E.B., Molinero, V., Structural transformation in supercooled water controls the crystallization rate of ice (2011) Nature, , not supplied
  • De La Llave, E., Gonzalez-Solveyra, E., Scherlis, D.A., Molinero, V., Manuscript in preparation; (2000) CRC-Handbook of Handbook of Chemistry and Physics, , 81 st ed. CRC Press: Boca Raton, FL

Citas:

---------- APA ----------
González Solveyra, E., De La Llave, E., Scherlis, D.A. & Molinero, V. (2011) . Melting and crystallization of ice in partially filled nanopores. Journal of Physical Chemistry B, 115(48), 14196-14204.
http://dx.doi.org/10.1021/jp205008w
---------- CHICAGO ----------
González Solveyra, E., De La Llave, E., Scherlis, D.A., Molinero, V. "Melting and crystallization of ice in partially filled nanopores" . Journal of Physical Chemistry B 115, no. 48 (2011) : 14196-14204.
http://dx.doi.org/10.1021/jp205008w
---------- MLA ----------
González Solveyra, E., De La Llave, E., Scherlis, D.A., Molinero, V. "Melting and crystallization of ice in partially filled nanopores" . Journal of Physical Chemistry B, vol. 115, no. 48, 2011, pp. 14196-14204.
http://dx.doi.org/10.1021/jp205008w
---------- VANCOUVER ----------
González Solveyra, E., De La Llave, E., Scherlis, D.A., Molinero, V. Melting and crystallization of ice in partially filled nanopores. J Phys Chem B. 2011;115(48):14196-14204.
http://dx.doi.org/10.1021/jp205008w