Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carbon tube sizes were investigated, (8,8) tubes, with radius Rcnt = 0.55 nm, and (16,16) ones, with Rcnt = 1.1 nm. In the narrowest tubes, we found that the cylindrical cavity is filled exclusively by acetonitrile; as the radius of the tube reaches ∼1 nm, water begins to get incorporated within the inner cavities. In (16,16) tubes, the analysis of global and local concentration fluctuations shows a net increment of the global acetonitrile concentration; in addition, the aprotic solvent is also the prevailing species at the vicinity of the tube walls. Mixtures confined within silica nanopores of radius ∼1.5 nm were also investigated. Three pores, differing in the effective wall/solvent interactions, were analyzed, (i) a first class, in which dispersive forces prevail (hydrophobic cavities), (ii) a second type, where oxygen sites at the pore walls are transformed into polar silanol groups (hydrophilic cavities), and (iii) finally, an intermediate scenario, in which 60% of the OH groups are replaced by mobile trimethylsilyl groups. Within the different pores, we found clear distinctions between the solvent layers that lie in close contact with the silica substrate and those with more central locations. Dynamical modes of the confined liquid phases were investigated in terms of diffusive and rotational time correlation functions. Compared to bulk results, the characteristic time scales describing different solvent motions exhibit significant increments. In carbon nanotubes, the most prominent modifications operate in the narrower tubes, where translations and rotations become severely hindered. In silica nanopores, the manifestations of the overall retardations are more dramatic for solvent species lying at the vicinity of trimethylsilyl groups. © 2010 American Chemical Society.

Registro:

Documento: Artículo
Título:Confined Polar Mixtures within Cylindrical Nanocavities
Autor:Rodriguez, J.; Elola, M.D.; Laria, D.
Filiación:Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, (1429) Buenos Aires, Argentina
ECyT, UNSAM, Martín de Irigoyen 3100, (1650) San Martín, Provincia de Buenos Aires, Argentina
Departamento de Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, (1428) Buenos Aires, Argentina
Palabras clave:Acetonitrile; Carbon nanotubes; Hydrophobicity; Mixtures; Molecular dynamics; Organic solvents; Oxygen; Silica; Tubes (components); Aprotic solvents; Carbon tube; Characteristic time; Concentration fluctuation; Confined liquids; Cylindrical cavities; Different solvents; Dispersive forces; Equimolar mixtures; Hydrophobic cavities; Inner cavities; Nano-cavities; OH group; Oxygen site; Pore wall; Silanol groups; Silica pores; Silica substrate; Similar solution; Solvent species; Time correlation functions; Trimethylsilyl groups; Tube walls; Nanopores
Año:2010
Volumen:114
Número:23
Página de inicio:7900
Página de fin:7908
DOI: http://dx.doi.org/10.1021/jp101836b
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v114_n23_p7900_Rodriguez

Referencias:

  • Giovambattista, N., Debenedetti, P.G., Rossky, P.J., (2009) Proc. Natl. Acad. Sci. U.S.A., 106, p. 15181
  • Mashl, R.J., Joseph, S., Aluru, N.R., Jakobsson, E., (2003) Nano Lett., 3, p. 589
  • Byl, O., Liu, J.-C., Wang, Y., Yim, W.-L., Johnson, J.K., Johnson Jr., J.Y., (2006) J. Am. Chem. Soc., 128, p. 12090
  • Jiang, J., Sandler, S.I., Smit, B., (2004) Nano Lett., 4, p. 241
  • Koone, N., Shao, Y., Zerda, T.W., (1995) J. Phys. Chem., 99, p. 16976
  • Yamaguchi, A., Yoda, T., Suzuki, S., Morita, K., Teramae, N., (2006) Anal. Sci., 22, p. 1501
  • Takahashi, R., Sato, S., Sodesawa, T., Ikeda, T., (2003) Phys. Chem. Chem. Phys., 5, p. 2476
  • Farrer, R.A., Fourkas, J.T., (2003) Acc. Chem. Res., 36, p. 605
  • Liu, G.Y., Li, Y.Z., Jonas, J., (1989) J. Chem. Phys., 90, p. 5881
  • Warnock, J., Awschalom, D.D., Shafer, M.W., (1986) Phys. Rev. B, 34, p. 475
  • Jirage, K.B., Hulteen, J.C., Martin, C.R., (1997) Science, 278, p. 655
  • Kalra, A., Garde, S., Hummer, G., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 10175
  • Martí, J., Gordillo, M.C., (2001) J. Chem. Phys., 114, p. 10486
  • Martí, J., Gordillo, M.C., (2003) J. Chem. Phys., 119, p. 12540
  • Hummer, G., Rasaiah, J.C., Noworyta, J.P., (2001) Nature, 414, p. 188
  • Waghe, A., Rasaiah, J.C., Hummer, G., (2002) J. Chem. Phys., 117, p. 10789
  • Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S., (1999) Science, 286, p. 1127
  • Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K., (2006) Proc. Natl. Acad. Sci. U.S.A., 103, p. 3357
  • Pizzitutti, F., Marchi, M., Sterpone, F., Rossky, P.J., (2007) J. Phys. Chem. B, 111, p. 7584
  • Pal, S.K., Peon, J., Zewail, A.H., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, p. 1763
  • Pal, S.K., Zhao, L.A., Zewail, A.H., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 8113
  • Levinger, N.E., Swafford, L.A., (2009) Annu. Rev. Phys. Chem., 60, p. 385
  • Lopez, C.F., Nielsen, S.O., M, L.K., Moore, P.B., (2004) J. Phys. Chem. B, 108, p. 6603
  • Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M., (1999) Rep. Prog. Phys., 62, p. 1573
  • Gelb, L.D., Gubbins, K.E., (1997) Phys. Rev. e, 55, p. 1290
  • Gelb, L.D., Sliwinska-Bartkowiak, M., Gubbins, K.E., Meunier, F., (1998) Fundamentals of Adsorption 6, , Ed.; Elsevier: Paris
  • Rother, G., Woywod, D., Schoen, M., Findenegg, G.H., (2004) J. Chem. Phys., 120, p. 11864
  • Woywod, D., Schemmel, S., Rother, G., Findenegg, G.H., Schoen, M., (2005) J. Chem. Phys., 122, p. 124510
  • Greberg, H., Patey, G.N., (2001) J. Chem. Phys., 114, p. 7182
  • Hemming, C.J., Patey, G.N., (2006) J. Phys. Chem. B, 110, p. 3764
  • Formisano, F., Teixeira, J., (2000) J. Phys.: Condens. Matter, 12, p. 351
  • Formisano, F., Teixeira, J., (2000) Eur. Phys. J. e, 1, p. 1
  • Mao, Z., Sinnott, S.B., (2001) J. Phys. Chem. B, 105, p. 6916
  • Kittaka, S., Kuranishi, M., Ishimaru, S., Umahara, O., (2007) J. Chem. Phys., 126. , 091103
  • Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, p. 12744
  • Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, p. 14844
  • Hwang, H., Schatz, G.C., Ratner, M.A., (2006) J. Phys. Chem. B, 110, p. 26448
  • Yu, Y.M., Chipot, C., Cai, W.S., Shao, X.G., (2006) J. Phys. Chem. B, 110, p. 6372
  • Yu, Y.M., Cai, W.S., Chipot, C., Sun, T.T., Shao, X.G., (2008) J. Phys. Chem. B, 112, p. 5268
  • Gulmen, T.S., Thompson, W.H., Fourkas, J.T., Levitz, P., Overney, R., Urbakh, M., (2006) Dynamics in Small Confining Systems VIII, 899. , Eds.; Materials Research Society Symposium Proceedings, Warrendale, PA,; Vol
  • Morales, C.M., Thompson, W.H., (2009) J. Phys. Chem. A, 113, p. 1922
  • Gulmen, T.S., Thompson, W.H., (2009) Langmuir, 25, p. 1103
  • Brodka, A., Zerda, T.W., (1991) J. Chem. Phys., 95, p. 3710
  • Furukawa, S., Nishiumi, T., Aoyama, N., Nitta, T., Nakano, M., (2005) J. Chem. Eng. Jpn., 38, p. 999
  • Handa, Y.P., Benson, G.C., (1981) J. Solution Chem., 10, p. 291
  • Van Meurs, N., Somsen, G., (1993) J. Solution Chem., 22, p. 427
  • Grande, M.D.C., Alvarez-Juliá, J., Marschoff, C.M., Bianchi, H.L., (2006) J. Chem. Thermodyn., 38, p. 760
  • Giovambattista, N., Rossky, P.J., Debenedetti, P.G., (2006) Phys. Rev. e, 73, p. 041604
  • Kamijo, T., Yamaguchi, A., Suzuki, S., Teramae, N., Itoh, T., Ikeda, T., (2008) J. Phys. Chem. A, 112, p. 11535
  • Giovambattista, N., Debenedetti, P.G., Rossky, P.J., (2007) J. Phys. Chem. C, 111, p. 1323
  • Castrillon, S.R.-V., Giovambattista, N., Aksay, I.A., Debenedetti, P.G., (2009) J. Phys. Chem. B, 113, p. 1438
  • Chandler, D., (2005) Nature, 437, p. 640
  • Chandler, D., (2007) Nature, 445, p. 831
  • Darve, E., Pohorille, A., (2001) J. Chem. Phys., 115, p. 9169
  • Hénin, J., Chipot, C., (2004) J. Chem. Phys., 121, p. 2904
  • Rodriguez, J., Semino, R., Laria, D., (2009) J. Phys. Chem. B, 113, p. 1241
  • Marchi, M., Sterpone, F., Ceccarelli, M., (2002) J. Am. Chem. Soc., 124, p. 6787
  • Faeder, J., Ladanyi, B.M., (2000) J. Phys. Chem. B, 104, p. 1033
  • Kalugin, O.N., Chaban, V.V., Loskutov, V.V., Prezhdo, O.V., (2008) Nano Lett., 8, p. 2126
  • Striolo, A., (2006) Nano Lett., 6, p. 633
  • Mukherjee, B., Maiti, P.K., Dasgupta, C., Sood, A.K., (2007) J. Chem. Phys., 126, p. 124704
  • Alexiadis, A., Kassinos, S., (2008) Mol. Simul., 34, p. 671
  • Lipari, G., Szabo, A., (1980) Biophys. J., 30, p. 489
  • Schröder, G., Alexiev, U., Grubmüller, H., (2005) Biophys. J., 89, p. 3757
  • Kinosita, K., Kawato, S., Ikegami, A., (1981) Biophys. J., 20, p. 289
  • Kawato, S., Kinosita, K., (1981) Biophys. J., 36, p. 277
  • Rodriguez, J., Mart, J., Guardia, E., Laria, D., (2008) J. Phys. Chem. B, 112, p. 8990
  • Zang, J., Konduri, S., Nari, S., Sholl, D.S., (2009) ACS Nano, 3, p. 1548
  • Blandamer, M.J., Blundell, N.J., Burgess, J., Cowles, H.J., Horn, I.M., (1990) J. Chem. Soc., Faraday Trans., 86, p. 277
  • Marcus, Y., Migron, Y., (1991) J. Phys. Chem., 95, p. 400
  • Kovacs, H., Laaksonen, A., (1991) J. Am. Chem. Soc., 113, p. 5596
  • Bergman, D.L., Laaksonen, A., (1998) Phys. Rev. e, 58, p. 4706
  • Mountain, R.D., (1999) J. Phys. Chem., 103, p. 10744
  • Venables, D.S., Schmuttenmaer, C.A., (2000) J. Chem. Phys., 113, p. 11222
  • Zheng, J., Lennon, E.M., Tsao, H.-K., Sheng, Y.-J., Jiang, S., (2005) J. Chem. Phys., 122, p. 214702

Citas:

---------- APA ----------
Rodriguez, J., Elola, M.D. & Laria, D. (2010) . Confined Polar Mixtures within Cylindrical Nanocavities. Journal of Physical Chemistry B, 114(23), 7900-7908.
http://dx.doi.org/10.1021/jp101836b
---------- CHICAGO ----------
Rodriguez, J., Elola, M.D., Laria, D. "Confined Polar Mixtures within Cylindrical Nanocavities" . Journal of Physical Chemistry B 114, no. 23 (2010) : 7900-7908.
http://dx.doi.org/10.1021/jp101836b
---------- MLA ----------
Rodriguez, J., Elola, M.D., Laria, D. "Confined Polar Mixtures within Cylindrical Nanocavities" . Journal of Physical Chemistry B, vol. 114, no. 23, 2010, pp. 7900-7908.
http://dx.doi.org/10.1021/jp101836b
---------- VANCOUVER ----------
Rodriguez, J., Elola, M.D., Laria, D. Confined Polar Mixtures within Cylindrical Nanocavities. J Phys Chem B. 2010;114(23):7900-7908.
http://dx.doi.org/10.1021/jp101836b