Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present results from nonequilibrium molecular dynamics experiments describing the relaxation of local concentrations at two reservoirs, initially filled with water (W) and acetonitrile (ACN), as they become connected through a membrane composed of (16,16) carbon nanotubes. Within the hydrophobic nanotube cavities, the equilibrium concentrations contrast sharply to those observed at the reservoirs, with a clear enhancement of ACN, in detriment of W. From the dynamical side, the relaxation involves three well-differentiated stages; the first one corresponds to the equilibration of individual concentrations within the nanotubes. An intermediate interval with Fickian characteristics follows, during which the overall transport can be cast in terms of coaxial opposite fluxes, with a central water domain segregated from an external ACN shell, in close contact with the tube walls. We also found evidence of a third, much slower, mechanism to reach equilibration, which involves structural modifications of tightly bound solvation shells, in close contact with the nanotube rims. © 2009 American Chemical Society.

Registro:

Documento: Artículo
Título:Coaxial cross-diffusion through carbon nantoubes
Autor:Rodriguez, J.; Elola, M.D.; Laria, D.
Filiación:Departamento de Física, Comisión Nacional de Energía Atómica, AVenida Libertador 8250, 1429 Buenos Aires, Argentina
ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, ProVincia de Buenos Aires, Argentina
Departamento de Quimica Inorganica, Analitica y Quimica-Fisica e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón II 1428, Buenos Aires, Argentina
Palabras clave:Acetonitrile; Domain walls; Molecular dynamics; Reservoirs (water); Cross-diffusion; Equilibrium concentration; Intermediate interval; Nonequilibrium molecular dynamics; Solvation shell; Structural modifications; Tube walls; Carbon nanotubes
Año:2009
Volumen:113
Número:45
Página de inicio:14844
Página de fin:14848
DOI: http://dx.doi.org/10.1021/jp908971b
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v113_n45_p14844_Rodriguez

Referencias:

  • Iijima, S., (1991) Nature, 363, p. 603
  • Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S., (1999) Science, 286, p. 1127
  • Hwang, H.J., Byum, K.R., Kang, J.W., (2004) Physica e, 23, p. 208
  • Kim, P., Lieber, C.M., (1999) Science, 286, p. 2148
  • Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K., (2006) Proc. Natl. Acad. Sci. U.S.A., 103, p. 3357
  • Jirage, K.B., Hulteen, J.C., Martin, C.R., (1997) Science, 278, p. 655
  • Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T.A., McEuen, P.L., (2004) Nature, 287, p. 622
  • Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L.G., (2004) Science, 303, p. 62
  • Majunder, M., Zhan, X., Adnrews, R., Hinds, B., (2007) J. Langmuir, 23, p. 8624
  • Lopez, C.F., Nielsen, S.O., Moore, P.B., Klein, M.L., (2004) Proc. Natl. Acad. Sci. U.S.A., 101, p. 4431
  • (2001), 51. , See, for example: Aquaporins. In Current Topics in Membranes; Hohmann, S., Agre, P., Nielse, S., Benos, D. J., Simon, S. A., Eds.; Academic Press: San Diego, CA; Kamala, C.R., Ayappa, K.G., Yashonath, S., (2004) J. Phys. Chem. B, 108, p. 4411
  • Kamala, C.R., Ayappa, K.G., Yashonath, S., (2002) Phys. ReV. e, 65, p. 061202
  • Mao, Z., Sinnott, S.B., (2001) J. Phys. Chem. B, 105, p. 6916
  • Lee, K.-H., Sinnott, S.B., (2005) Nano Lett., 5, p. 793
  • Mao, Z., Sinnott, S., (2002) Phys. ReV. Lett., 27, p. 278301
  • Hung, L., Zhang, L., Shao, Q., Lu, L., Lu, X., Jiang, S., Shen, W., (2007) J. Phys. Chem. C, 111, p. 11912
  • Muris, M., Dufau, N., Bienfait, M., Dupont-Pavlovsky, N., Grillet, Y., Palmari, J.P., (2000) Langmuir, 16, p. 7019
  • Chen, H., Scholl, D.S., (2004) J. Am. Chem. Soc., 126, p. 7778
  • Skoulidas, A.I., Bowen, T.C., Doelling, C.M., Falconer, J.L., Noble, R.D., Scholl, D.S., (2003) J. Membr. Sci., 227, p. 123
  • Skoulidas, A.I., Ackermann, D.M., Johnson, J.K., Sholl, D.S., (2002) Phys. ReV. Lett., 89, p. 185901
  • Krishna, R., Van Baten, J.M., (2006) Ind. Eng. Chem. Res., 45, p. 2084
  • Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O., (2006) Science, 312, p. 1034
  • Striolo, A., (2006) Nano Lett., 6, p. 633
  • Huang, L.-L., Zhang, L.-Z., Shao, Q., Wang, J., Lu, L.-H., Lu, X.-H., Jian, S.-Y., Shen, W.-F., (2006) J. Phys. Chem. B, 110, p. 25761
  • Thomas, J.A., McGaughey, A.J.H., (2009) Phys. ReV. Lett., 102, p. 184502
  • Lui, Y., Wang, Q., (2005) Phys. ReV. B, 72, p. 085420
  • Martý́, J., Gordillo, C., (2001) J. Chem. Phys., 114, p. 10488
  • Martý́, J., Gordillo, C., (2003) J. Chem. Phys., 119, p. 12540
  • Maibaum, L., Chandler, D., (2003) J. Phys. Chem. B, 107, p. 1189
  • Chen, X., Cao, G., Han, A., Punyamurtula, V.K., Liu, L., Culligan, P., Kim, T., Qiao, Y., (2008) Nano Lett., 8, p. 2988
  • Kagulin, O.N., Chaban, V.V., Loskutov, V.V., Prezhdo, O.V., (2008) Nano Lett., 8, p. 2126
  • Zhen, J., Lennon, E.M., Taso, H.-K., Sheng, Y.-J., Jiang, S., (2005) J. Chem. Phys., 122, p. 214702
  • Karla, A., Garde, S., Hummer, G., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 1017
  • Alexiadis, A., Kassinos, S., (2008) Chem. ReV., 108, p. 5104
  • Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., (1987) J. Phys. Chem., 91, p. 6269
  • Grabuleda, X., Jaime, C., Kollman, P.A., (2000) J. Comput. Chem., 21, p. 901
  • MacKerell Jr., A.D., Bashford, D., Bellott, M., Dunbrack Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Karplus, M., (1998) J. Phys. Chem. B, 102, p. 3586
  • Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Chem. Phys. B, 113, p. 12744
  • note; Rodriguez, J., Elola, M.D., Laria, D., To be published; Hummer, G., Rasaiah, J.C., Noworyta, J.P., (2001) Nature, 414, p. 188
  • Waghe, A., Rasaiah, J., Hummer, G., (2002) J. Chem. Phys., 117, p. 10789
  • Taylor, R., Krishna, R., (1993) Multicomponent Mass Trasfer, , Wiley & Sons: New York
  • Chandler, D., (1987) Introduction to Modern Statistical Mechanics, , Oxford University Press: New York Chapter 8
  • Von Goldammer, E., Hertz, H.G., (1970) J. Phys. Chem., 74, p. 3734
  • Liu, Y., Yuang, Q., (2005) Phys. ReV. B, 72, p. 085420
  • Hefter, G., (2005) Pure Appl. Chem., 77, p. 605
  • Fornasiero, F., Park, H.G., Holt, J.K., Stadermann, M., Grigoropoulos, C.P., (2008) Proc. Natl. Acad. Sci. U.S.A., 105, p. 17250

Citas:

---------- APA ----------
Rodriguez, J., Elola, M.D. & Laria, D. (2009) . Coaxial cross-diffusion through carbon nantoubes. Journal of Physical Chemistry B, 113(45), 14844-14848.
http://dx.doi.org/10.1021/jp908971b
---------- CHICAGO ----------
Rodriguez, J., Elola, M.D., Laria, D. "Coaxial cross-diffusion through carbon nantoubes" . Journal of Physical Chemistry B 113, no. 45 (2009) : 14844-14848.
http://dx.doi.org/10.1021/jp908971b
---------- MLA ----------
Rodriguez, J., Elola, M.D., Laria, D. "Coaxial cross-diffusion through carbon nantoubes" . Journal of Physical Chemistry B, vol. 113, no. 45, 2009, pp. 14844-14848.
http://dx.doi.org/10.1021/jp908971b
---------- VANCOUVER ----------
Rodriguez, J., Elola, M.D., Laria, D. Coaxial cross-diffusion through carbon nantoubes. J Phys Chem B. 2009;113(45):14844-14848.
http://dx.doi.org/10.1021/jp908971b