Artículo

Rodriguez, J.; Elola, M.D.; Laria, D. "Polar mixtures under nanoconfinement" (2009) Journal of Physical Chemistry B. 113(38):12744-12749
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present results from molecular dynamics simulations describing structural and dynamical characteristics of equimolar mixtures of water and acetonitrile, confined between two silica walls separated at interplate distances of d = 0.6, 1, and 1.5 nm. Two different environments were investigated: a first one where wall-solvent dispersion forces prevail (hydrophobic confinement) and a second one in which the terminal O atoms at the silica surface are transformed into silanol groups (hydrophilic confinement). For the former case, we found that, at the shortest interplate distance examined, the confined region is devoid of water molecules. At an interplate distance of the order of 1 nm, water moves into the confined region, although, in all cases, there is a clear enhancement of the local concentration of acetonitrile in detriment of that of water. Within hydrophilic environments, we found clear distinctions between a layer of bound water lying in close contact with the silica substrates and a minority of confined water that occupies the inner liquid slab. The bound aqueous layer is fully coordinated to the silanol groups and exhibits minimal hydrogen bonding with the second solvation layer, which exclusively includes acetonitrile molecules. Dynamical characteristics of the solvent mixture are analyzed in terms of diffusive and rotational motions in both environments. Compared to bulk mixtures, we found significant retardations in all dynamical modes, with those ascribed to water molecules bound to the hydrophilic plates being the most dramatic. © 2009 American Chemical Society.

Registro:

Documento: Artículo
Título:Polar mixtures under nanoconfinement
Autor:Rodriguez, J.; Elola, M.D.; Laria, D.
Filiación:Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429, Buenos Aires, Argentina
ECyT, UNSAM, Martín de Irigoyen 3100, 1650, San Martin, Provincia de Buenos Aires, Argentina
Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE, Pabellón II, 1428, Buenos Aires, Argentina
Palabras clave:Acetonitrile; Hydrogen; Hydrogen bonds; Hydrophilicity; Mixtures; Molecular dynamics; Organic solvents; Silica; Walls (structural partitions); Acetonitrile molecules; Aqueous layer; Bound waters; Bulk mixtures; Concentration of; Confined water; Dynamical characteristics; Equimolar mixtures; Hydrogen bondings; Hydrophilic environments; Hydrophilic plates; Hydrophobic confinement; Liquid slabs; Molecular dynamics simulations; Nanoconfinements; Rotational motion; Silanol groups; Silica substrate; Silica surface; Solvation layers; Solvent dispersions; Solvent mixtures; Water molecule; Molecules
Año:2009
Volumen:113
Número:38
Página de inicio:12744
Página de fin:12749
DOI: http://dx.doi.org/10.1021/jp905920m
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v113_n38_p12744_Rodriguez

Referencias:

  • Parris, N.A., Instrumental liquid chromatography (1976) Journal of Chromatography Library Series, 5. , Elsevier: Amsterdam, The Netherlands
  • Braun, J., Fouqueau, A., Bemish, R.J., Meuwly, M., (2008) Phys. Chem. Chem. Phys., 10, p. 4765
  • Dawson, E.D., Wallen, S.L., (2002) J. Am. Chem. Soc., 124, p. 14210
  • Couche, R.A., Ritchie, I.M., (1984) Aust. J. Chem., 37, p. 231
  • Toma, H.E., Takasugi, M.S., (1989) J. Solution Chem., 18, p. 575
  • Zhang, X.G., Shi, Y.L., Li, H.L., (2002) J. Colloid Interface Sci., 246, p. 296
  • Hoshi, N., Haga, A., Hori, Y., (2004) Electrochemistry, 72, p. 852
  • Schenck, F.J., Wong, J.W., (2008) Analysis of Pesticides in Food and Environmental Samples, , Tadeo, J. L., Ed.; CRC Press: Boca Raton, FL, Chapter 6
  • Benter, G., Schneider, H., (1973) Ber. Bunsen-Ges. Phys. Chem., 77, p. 997
  • Moolel, M., Scheider, H., (1971) Z. Phys. Chem. (Munich), 74, p. 237
  • Szydlowski, J., Szykyla, M., (1999) Fluid Phase Equilib., 154, p. 89
  • Sazonov, V.P., Sha, D.G., (2002) J. Phys. Chem. Ref. Data, 57, p. 989
  • Scheinder, G.Z., (1964) Phys. Chem., 41, p. 327
  • Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinskabartkowiak, M., (1999) Rep. Prog. Phys., 62, p. 1573
  • Gelb, L.D., Gubbins, K.E., (1997) Phys. Rev. E, 55, p. 1290
  • Gelb, L.D., Sliwinska-Barkwowiak, M., Gubbins, K., (1998) Fundamentals of Adsorption, 6th Ed., p. 497. , Maunier, F., Ed.; Elsevier: Paris
  • Rother, G., Woywod, D., Schoen, M., Findenegg, G.H., (2004) J. Chem. Phys., 120, p. 11864
  • Woywod, D., Schemel, S., Rother, G., Findenegg, G.H., Schoen, M., (2005) J. Chem. Phys., 122, p. 125510
  • Greberg, H., Patey, G.N., (2001) J. Chem. Phys., 114, p. 7182
  • Hemming, C.J., Patey, G.N., (2006) J. Phys. Chem. B, 110, p. 3764
  • Lin, M.Y., Sinha, S.K., Drake, J.M., Wu, X.I., Thiyagarajan, P., Stanley, H.B., (1994) Phys. Rev. Lett., 72, p. 2207
  • Formisano, F., Teixeira, J., (2000) J. Phys.: Condens. Matter, 12, pp. A351
  • Formisano, F., Teixeira, J., (2000) Eur. Phys. J. E, 1, p. 1
  • Kittaka, S., Kuranishi, M., Ishimaru, S., Umahara, O., (2007) Chem. Phys., 126, p. 091103
  • Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., (1992) Nature, 359, p. 710
  • Giovambattista, N., Rossky, P.J., Debendetti, P.G., (2006) Phys. Rev. E, 73, p. 041604
  • Giovambattista, N., Debendetti, P.G., Rossky, P.J., (2007) J. Phys. Chem. C, 111, p. 1323
  • Romero-Vargas Castrillón, S., Giovambattista, N., Aksay, I.A., Debendetti, P.G., (2009) J. Phys. Chem. B, 113, p. 1438
  • Chandler, D., (2007) Nature, 455, p. 831
  • Chandler, D., (2005) Nature, 437, p. 640
  • Rasaiah, J.C., Garde, S., Hummer, G., (2008) Annu. Rev. Phys. Chem., 59, p. 713
  • Levinger, N., Swafford, L., (2009) Annu. Rev. Phys. Chem., 80, p. 395
  • Kolesnikov, A.I., Zanotti, J.-M., Loong, C.-K., Thiyagarajan, P., Moravsky, A.P., Loutfy, R.O., Burnhan, C.J., (2004) Phys. Rev. Lett., 93, p. 035503
  • Okazaki, M., Toriyama, K., (2003) J. Phys. Chem. B, 107, p. 7645
  • Poynor, A., Hong, L., Robinson, I.K., Granick, S., Zhang, Z., Fenter, P.A., (2006) Phys. Rev. Lett., 87, p. 266101
  • Choudhyry, N., Montgomery Pettitt, B., (2007) J. Am. Chem. Soc., 129, p. 4847
  • Morcom, K.W., Smith, R.W., (1969) J. Chem. Thermodyn., 1, p. 503
  • Moreau, C., Douhéret, G., (1975) Thermochim. Acta, 13, p. 385
  • Moreau, C., Douhéret, G., (1976) J. Chem. Thermodyn., 8, p. 403
  • Douhéret, G., Moreau, C., Viallard, A., (1985) Fluid Phase Equilib., 22, p. 289
  • Nishikawa, K., Kasahara, Y., Ichioka, T., (2002) J. Phys. Chem. B, 106, p. 693
  • Takamuku, T., Tabata, M., Yamaguchi, A., Nishimoto, J., Kumamoto, M., Wakita, H., Yamaguch, T., (1998) J. Phys. Chem. B, 102, p. 8880
  • Bakó, I., Megyes, T., Grósz, T., Pálinkás, G., Dore, J., (2006) J. Mol. Liq., 125, p. 174
  • Jamroz, D., Stangret, J., Lindgren, J., (1993) J. Am. Chem. Soc., 115, p. 6165
  • Tee, E.M., Awichi, A., Zhao, W., (2002) J. Phys. Chem. A, 106, p. 6714
  • Bertie, J.E., Lan, Z., (1997) J. Phys. Chem. B, 101, p. 4111
  • Cringus, D., Yeremenko, S., Pshenichnikov, M.S., Wiersma, D.A., (2004) J. Phys. Chem. B, 108, p. 10376
  • Venables, D.S., Schmuttenmaer, C.A., (1998) J. Chem. Phys., 108, p. 4935
  • Venables, D.S., Schmuttenmaer, C.A., (2000) J. Chem. Phys., 113, p. 11222
  • Easteal, A., (1979) Aust. J. Chem., 32, p. 1379
  • Hardy, E.H., Zygar, A., Zeidler, M.D., (2000) Z. Phys. Chem., 214, p. 1633
  • Von Goldammer, E., Hertz, H.G., (1970) J. Phys. Chem., 74, p. 3734
  • Harris, K.R., Newitt, P.J., (1999) J. Phys. Chem. B, 103, p. 7015
  • Blandamer, M.J., Blundell, N.J., Burgess, J., Cowles, H.J., Horn, I.M., (1990) J. Chem. Soc., Faradary Trans., 86, p. 277
  • Marcus, Y., Mignon, Y., (1991) J. Phys. Chem., 95, p. 400
  • Kovacs, J.H., Laaksonen, A., (1991) J. Am. Chem. Soc., 113, p. 5596
  • Bergman, D.K., Laaksonen, A., (1998) Phys. Rev. E, 58, p. 4706
  • Mountain, R.D., (1999) J. Phys. Chem., 103, p. 10744
  • Zhang, D., Gutow, J.H., Eisenthal, K.B., Heinz, T.F., (1993) J. Chem. Phys., 98, p. 5099
  • Kim, J., Chou, K.C., Somorjai, G.A., (2003) J. Phys. Chem. B, 107, p. 1592
  • Paul, S., Chandra, A., (2005) J. Chem. Phys., 123, p. 184706
  • Mountain, R.D., (2001) J. Phys. Chem. B, 105, p. 6556
  • Molinero, V., Laria, D., Kapral, R., (1998) J. Chem. Phys., 109, p. 6844
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., (1983) J. Chem. Phys., 79, p. 926
  • Grabuleda, X., Jaime, C., Kollman, P.A., (2000) J. Comput. Chem., 27, p. 901
  • Lee, S.H., Rossky, P.J., (1994) J. Chem. Phys., 100, p. 3334
  • Handa, Y.P., Benson, G.C., (1981) J. Solution Chem., 10, p. 291
  • Van Meurs, N., Somsen, G., (1993) J. Solution Chem., 22, p. 427
  • Grande, M., Alvarez-Julia, J., Barrero, C.R., Marschoff, C.M., Bianchi, H.L., (2006) J. Chem. Thermodyn., 38, p. 760
  • Kovacs, H., Laaksonen, A., (1991) J. Am. Chem. Soc., 113, p. 5596. , In equimolar mixtures, W-W coupling is stronger than that for AW. See Table 1
  • See Figure 1 of ref 18; Dixit, S., Crain, J., Poon, W.C.K., Finney, J.L., Soper, A.K., (2002) Nature, 416, p. 829

Citas:

---------- APA ----------
Rodriguez, J., Elola, M.D. & Laria, D. (2009) . Polar mixtures under nanoconfinement. Journal of Physical Chemistry B, 113(38), 12744-12749.
http://dx.doi.org/10.1021/jp905920m
---------- CHICAGO ----------
Rodriguez, J., Elola, M.D., Laria, D. "Polar mixtures under nanoconfinement" . Journal of Physical Chemistry B 113, no. 38 (2009) : 12744-12749.
http://dx.doi.org/10.1021/jp905920m
---------- MLA ----------
Rodriguez, J., Elola, M.D., Laria, D. "Polar mixtures under nanoconfinement" . Journal of Physical Chemistry B, vol. 113, no. 38, 2009, pp. 12744-12749.
http://dx.doi.org/10.1021/jp905920m
---------- VANCOUVER ----------
Rodriguez, J., Elola, M.D., Laria, D. Polar mixtures under nanoconfinement. J Phys Chem B. 2009;113(38):12744-12749.
http://dx.doi.org/10.1021/jp905920m