Artículo

Rodriguez, J.; Rico, D.H.; Domenianni, L.; Laria, D. "Confinement of polar solvents within β-cyclodextrins" (2008) Journal of Physical Chemistry B. 112(25):7522-7529
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Using molecular dynamics techniques, we examined equilibrium and dynamical characteristics pertaining to the solvation of a single β-cyclodextrin (CD) in water and in dimethylsulfoxide (DMSO). Compared to its global minimum structure, the overall shape of the solute in solution is reasonably well preserved. While in aqueous solutions, the average number of solvent molecules retained within the central cavity of the oligosaccharide is close to 5, for DMSO, that number reduces to ∼1. No evidence of significant orientational correlations of the trapped molecules were found in either solvent. The main contributions to the hydrogen-bond (HB) connectivity between the solute and the bulk phases are due to the more distal HO6-O6 hydroxyl groups, acting as HB donors and acceptors. The average residence time for retained DMSO was found to be in the nanosecond range, and it is, at least, 1 order of magnitude longer that the one observed for water. We also analyzed the characteristics of the solvation of the β-CD in an equimolar water-DMSO mixture. In this environment, we found a preferential localization of a single DMSO molecule in the interior of the CD and a very minor retention of water. In the mixture, the characteristic time of residence of the trapped DMSO molecule increases by a factor of ∼2. The observed difference was rationalized in terms of the fluctuations of the local concentrations of the two species in the vicinity of the CD top and bottom rims. © 2008 American Chemical Society.

Registro:

Documento: Artículo
Título:Confinement of polar solvents within β-cyclodextrins
Autor:Rodriguez, J.; Rico, D.H.; Domenianni, L.; Laria, D.
Filiación:Departamento de Quimica Inorganica, Analitica y Quimica-Fisica e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pabellón II, 1428, Buenos Aires, Argentina
Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429, Buenos Aires, Argentina
Palabras clave:Cyclodextrins; Data storage equipment; Dimethyl sulfoxide; Dynamics; Hydrogen; Hysteresis motors; Molecular dynamics; Molecules; Offshore oil well production; Quantum chemistry; Silanes; Solutions; Solvation; Solvents; Aqueous solutions; Average residence time; Bulk phases; Characteristic time; Cyclodextrin; Dynamical characteristics; Global minimum structure; Hydroxyl groups; Molecular dynamics techniques; Nanosecond range; Order-of magnitudes; Orientational correlations; Polar solvents; Preferential localization; Solvent molecules; Trapped molecules; Organic solvents; beta cyclodextrin; beta cyclodextrin derivative; solvent; article; chemical structure; chemistry; computer simulation; conformation; beta-Cyclodextrins; Computer Simulation; Models, Molecular; Molecular Conformation; Solvents
Año:2008
Volumen:112
Número:25
Página de inicio:7522
Página de fin:7529
DOI: http://dx.doi.org/10.1021/jp711609q
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
CAS:beta cyclodextrin, 7585-39-9; beta-Cyclodextrins; betadex, 7585-39-9; Solvents
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v112_n25_p7522_Rodriguez

Referencias:

  • For comprehensive information about cyclodextrins, see the special issue corresponding to the 98th of Chemical Reviews (1998); Ivanov, P.M., Jaime, C., (2004) J. Phys. Chem. B, 108, p. 6261
  • Reija, B., Wajih Al-Soufi, W., Novo, M., Tato, J.V.J., (2005) Phys. Chem. B, 109, p. 1364
  • Douhal, A.J., (2005) Photochem. Photobiol. Part A: Chem, 173, p. 229
  • Okazaki, M., Kuwata, K., (1984) J. Phys. Chem, 88, p. 4181
  • Kano, K., Kato, Y., Kodera, N., (1996) J. Chem. Soc., Perkin Trans, 2, p. 1211
  • Yu, Y., Chipot, C., Cai, W., Shao, X., (2006) J. Phys. Chem. B, 110, p. 6372
  • Balabai, N., Linton, B., Napper, A., Priyadarshy, S., Sukharevsky, A.P., Waldeck, D.H., (1998) J. Phys. Chem. B, 102, p. 9617
  • Hyrayama, F., Vekama, K., (1999) Adv. Drug Deliver. Rev, 36, p. 125
  • Uekama, K., Hirayama, G., Irie, T., (2002) Chem. Rev, 98, p. 2045
  • Szejtli, J., (1991) J. Incl. Phenom, 14, p. 25
  • Kuwabara, T., Kazuyo Shiba, K., Ozawa, M., Miyajima, N., Yasutada, S., (2006) Tetrahedron Lett, 47, p. 4433
  • Clark, J.L., Peinado, J., Stezowski, J.J., Void, R.L., Huang, Y., Hoatson, G.L.J., (2006) Phys. Chem. B, 110, p. 26375
  • Menuel, S., Duval, R.E., Cue, D., Mutzenhardt, P., Alain Marsura, A., (2007) New J. Chem, 31, p. 995
  • Pizzitutti, F., Marchi, M., Sterpone, F., Rossky, P.J., (2007) J. Phys. Chem. B, 111, p. 7584
  • Nandi, N., Bagchi, B., (1997) J. Phys. Chem. A, 101, p. 10954
  • Battacharyya, K., Bagchi, B., (2000) J. Phys. Chem. A, 104, p. 10603
  • Bhattacharyya, K., (2003) Acc. Chem. Res, 36, p. 95
  • Shikata, T., Takahashi, R., Onji, T., Satokawa, Y., Harada, A., (2006) J. Phys. Chem. B, 110, p. 18112
  • Shikata, T., Takahashi, R., Satokawa, Y., (2007) J. Phys. Chem. B, 111, p. 12239
  • Vajda, S., Jimenez, R., Rosenthal, S.J., Fidlert, V., Fleming Jr., G.R., (1995) J. Chem. Soc. Faraday. Trans, 91, p. 867
  • Bher, J.P., Lehn, J.M., (1976) J. Am. Chem. Soc, 98, p. 1743
  • Douhal, A., Fiebig, T., Chachisvilis, M., Zewail, A.H., (1998) J. Phys. Chem. A, 102, p. 1657
  • Douhal, A., (2004) Chem. Rev, 104, p. 1955
  • Zabel, V., Saenger, W., Mason, S.A., (1986) J. Am. Chem. Soc, 108, p. 3664
  • Kevin, J., Naidoo, K.J., Chen, J.Y.-J., Jansson, J.L.M., Widmalm, G., Maliniak, A., (2004) J. Phys. Chem. B, 108, p. 4236
  • Scypinski, S., Drake, J.M., (1985) J. Phys. Chem, 89, p. 2432
  • Sen, S., Sukul, D., Dutta, P., Bhattacharyya, K., (2001) J. Phys. Chem. A, 105, p. 10635
  • Lipkowitz, K.B., (1998) Chem. Rev, 98, p. 1829. , and references therein
  • Manunzaa, B., Deiana, S., Pintore, M., Gessab, C., (1997) J. Mol. Struc. (Theochem), 419, p. 133
  • Lawtrakul, L., Viernstein, H., Wolschann, P., (2003) Int. J. Pharm, 256, p. 33
  • Starikov, E.V., Bräsicke, K., Knapp, E.W., Saenger, W., (2001) Chem. Phys. Lett, 336, p. 504
  • Koehler, J.R.H., Saenger, W., van Gunsteren, W.F., (1987) Eur. Biophys. J, 15, p. 197
  • Koehler, J.R.H., Saenger, W., van Gunsteren, W.F., (1987) Eur. Biophys. J, 15, p. 211
  • Koehler, J.R.H., Saenger, W., van Gunsteren, W.F., (1988) Eur. Biophys. J, 16, p. 153
  • Koehler, J.R.H., Saenger, W., van Gunsteren, W.F., (1988) J. Mol. Biol, 203, p. 241
  • Varady, J., Wu, X., Wang, S.J., (2002) Phys. Chem. B, 106, p. 4863
  • Heine, T., Dos Santos, H.F., Patchkovski, S., Duarte, H.A., (2007) J. Phys. Chem. A, 111, p. 5648
  • Pérez, S., Imberty, A., Engelsen, S.B., Gruza, J., Mazeau, K., Jimenez-Barbero, J., Poveda, A., Rasmussen, K., (1998) Carbohydr. Res, 314, p. 141. , For a critical review of the quality of different Hamiltonian models, see
  • Englesen, S.B., Pérez, S., (1996) Carbohydr. Res, 292, p. 21
  • Engelsen, S.B., Hervé-du-Penhoat, C., Pérez, S., (1999) J. Phys. Chem, 99, p. 13334
  • Corzana, F., Motawia, M.S., Hervé-du-Penhoat, C., Pérez, S., Tschampel, S.M., Woods, R.J., Engelsen, S.B., (2004) J. Comput. Chem, 25, p. 573
  • French, A.D., Johnson, G.P., (2007) Carbohydr. Res, 342, p. 1223
  • Momany, G.A., Willett, J.K., (1994) Carbohydr. Res, 2000, p. 326
  • Momany, G.A., Willett, J.K., (2000) Carbohydr. Res, 326, p. 210
  • Martyna, G.J., Tobias, D.J., Klein, M.L., (1994) J. Chem. Phys, 101, p. 4177
  • Feller, S.E., Zhang, Y., Pastor, R.W., Brooks, B.R., (1995) J. Chem. Phys, 103, p. 4613
  • Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhordshid, E., Villa, E., Chipot, C., Schulten, K.J., (2005) Comput. Chem, 26, p. 1781
  • MacKerell, A. D., Jr.; Bashford, D.; Bellott, R. L.; Dunbrack, R. L., Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E., III; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B. 1998, 102, 3586, and references therein; Kuttel, M., Brady, J.W., Naidoo, K.J., (2002) J. Comput. Chem, 23, p. 1236
  • Eklund, R., Wildman, G., (2003) Carb. Res, 338, p. 393
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., (1983) J. Chem. Phys, 79, p. 926
  • Luzar, A., Chandler, D., (1998) J. Chem. Phys, 98, p. 8160
  • Benjamin, I., (1999) J. Chem. Phys, 110, p. 8070
  • Senapati, S., (2002) J. Chem. Phys, 117, p. 1812
  • Yeh, I.-C., Berkowitz, M.L., (1999) J. Chem. Phys, 111, p. 3155
  • Betzel, C., Saenger, W., Hingerty, B.E., Brown, G.M., (1974) J. Am. Chem. Soc, 96, p. 3630
  • Raddaini, G., Ganazzoli, F., (2007) Chem. Phys, 333, p. 128
  • In ref 29, the number of trapped water molecules was ∼7, although differences in the boundaries for the CD interior may account for the discrepancy; Marti, J., Padro, J.A., Guardia, E., (1996) J. Chem. Phys, 105, p. 639. , and references therein. See
  • We did verify that all radial distribution functions reach their assymptotic value gαγ(r) ∼1 for r, L/2; Steiner, T., Saenger, W., (1994) Carb. Res, 259, p. 1. , See, for example: a
  • Klar, B., Hingerty, B.E., Saenger, W., (1980) Acta Crystallogr. B, 36, p. 1154
  • Koehler, J.E.H., Saenger, W., van Gunsteren, W.F., (1988) J. Mol. Biol, 203, p. 241
  • Snor, W., Liedl, E., Weiss-Greiler, P., Karpfen, A., Viernstein, H., Wolschann, P., (2007) Chem. Phys. Lett, 441, p. 159
  • Mark, P., Nilsson, L., (2001) J. Chem. Phys. A, 105, p. 9954
  • Lum, K., Chandler, D., Weeks, J.D., (1999) J. Phys. Chem. B, 103, p. 4570. , For drying transitions in nanocavities see, for example
  • Sen, P., Roy, D., Mondai, S.K., Sahi, K., Ghosh, S., Bhattacharyya, K., (2005) J. Phys. Chem. A, 109, p. 9716

Citas:

---------- APA ----------
Rodriguez, J., Rico, D.H., Domenianni, L. & Laria, D. (2008) . Confinement of polar solvents within β-cyclodextrins. Journal of Physical Chemistry B, 112(25), 7522-7529.
http://dx.doi.org/10.1021/jp711609q
---------- CHICAGO ----------
Rodriguez, J., Rico, D.H., Domenianni, L., Laria, D. "Confinement of polar solvents within β-cyclodextrins" . Journal of Physical Chemistry B 112, no. 25 (2008) : 7522-7529.
http://dx.doi.org/10.1021/jp711609q
---------- MLA ----------
Rodriguez, J., Rico, D.H., Domenianni, L., Laria, D. "Confinement of polar solvents within β-cyclodextrins" . Journal of Physical Chemistry B, vol. 112, no. 25, 2008, pp. 7522-7529.
http://dx.doi.org/10.1021/jp711609q
---------- VANCOUVER ----------
Rodriguez, J., Rico, D.H., Domenianni, L., Laria, D. Confinement of polar solvents within β-cyclodextrins. J Phys Chem B. 2008;112(25):7522-7529.
http://dx.doi.org/10.1021/jp711609q