Artículo

Rodriguez, J.; Martí, J.; Guàrdia, E.; Laria, D. "Protons in non-ionic aqueous reverse micelles" (2007) Journal of Physical Chemistry B. 111(17):4432-4439
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Using molecular dynamics techniques, we investigate the solvation of an excess proton within an aqueous reverse micelle in vacuo, with the neutral surfactant diethylene glycol monodecyl ether [CH3CH2) 11(OC2H4)2-OH]. The simulation experiments were performed using a multistate empirical valence bond Hamiltonian model. Our results show that the stable solvation environments for the excess proton are located in the water-surfactant interface and that its first solvation shell is composed exclusively by water molecules. The relative prevalence of Eigen- versus Zundel-like solvation structures is investigated; compared to bulk results, Zundel-like structures in micelles become somewhat more stable. Characteristic times for the proton translocation jumps have been computed using population relaxation time correlation functions. The micellar rate for proton transfer is approximately 40x smaller than that found in bulk water at ambient conditions. Differences in the computed rates are examined in terms of the hydrogen-bond connectivity involving the first solvation shell of the excess charge with the rest of the micellar environment. Simulation results would indicate that proton transfers are correlated with rare episodes during which the HB connectivity between the first and second solvation shells suffers profound modifications. © 2007 American Chemical Society.

Registro:

Documento: Artículo
Título:Protons in non-ionic aqueous reverse micelles
Autor:Rodriguez, J.; Martí, J.; Guàrdia, E.; Laria, D.
Filiación:Departamento de Química Inorgánica, Analítica y Qumica-Física, INQUIMAE, Ciudad Universitaria, Pabellón II, 1428, Buenos Aires, Argentina
Unidad Actividad Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429, Buenos Aires, Argentina
Departament de Física i Enginyeria Nuclear, Universitat Polytècnica de Catalunya, B4-B5 Campus Nord, 08034 Barcelona, Spain
Palabras clave:Ethers; Hamiltonians; Hydrogen bonds; Interfaces (materials); Molecular dynamics; Protons; Relaxation time; Solvation; Surface active agents; Correlation functions; Hamiltonian models; Monodecyl ether; Water surfactant interface; Micelles
Año:2007
Volumen:111
Número:17
Página de inicio:4432
Página de fin:4439
DOI: http://dx.doi.org/10.1021/jp0703410
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v111_n17_p4432_Rodriguez

Referencias:

  • Jones, M.N., Chapman, D., (1995) Micelles, Monolayers, and Biomembranes, , John Wiley: New York
  • Luisi, P.K., Straub, B.E., (1984) Reverse Micelles: Biological and Technological Relevance of Amphiphilic Structures in Apolar Media, , Plenum Press: New York
  • (1989) Structure and Reactiviy in Reverse Micelles, , Pileni, M. P. Ed, Elsevier: Amsterdam
  • Bhattacharyya, K., (2003) Acc. Chem. Res, 36, p. 95
  • Nandi, N., Bhattacharrya, K., Bagchi, B., (2000) Chem. Rev, 100, p. 2013
  • More refined descriptions take the number of water states up to three, making a distinction between trapped, bound-next-to-surfactant, and free water. See, for example; MacDonald, H., Bedwell, B., Gulari, E., (1986) Langmuir, 2, p. 704
  • D'Arpano, A., Lizzio, A., Turco Liveri, V., Alliota, F., Vasi, C., Migliardo, P., (1988) J. Phys. Chem, 92, p. 4436
  • Llor, A., Rigny, P., (1986) J. Am. Chem. Soc, 108, p. 7533
  • De Marco, A., Menegatti, E., Luisi, P.L., (1986) J. Biochem. Biophys. Methods, 12, p. 325
  • Hauser, H., Haering, G., Pande, A., Luisi, P.L., (1989) J. Phys. Chem, 93, p. 7869
  • Hasegawa, M., (2001) Langmuir, 17, p. 1426
  • Holmes, J.D., Ziegler, K.J., Audriani, M., Lee Jr., C.T., Bhargava, P.A., Steytler, D.C., Johnston, K.P., (1999) J. Phys. Chem. B, 103, p. 5703
  • Baruah, B., Roden, J.M., Sedgwick, M., Correa, M.N., Crans, D.C., Levinger, N.E., (2006) J. Am. Chem. Soc, 128, p. 12758
  • Bardez, E., Goguillon, B.-T., Jeh, E., Valeur, B., (1984) J. Phys. Chem, 88, p. 1909
  • Bardez, E., Monnier, E., Valeur, B., (1985) J. Phys. Chem, 89, p. 5031
  • Politi, M.J., Brandt, O., Fendler, H.J., (1985) J. Phys. Chem, 89, p. 2345
  • Politi, M.J., Chaimovich, J., (1986) J. Phys. Chem, 90, p. 282
  • Cohen, N., Huppert, D., Solntsev, K.M., Tsfadia, Y., Nachiel, E., Gutman, M., (2002) J. Am. Chem. Soc, 124, p. 7539
  • Faeder, J., Ladanyi, B.J., (2000) Phys. Chem. B, 104, p. 1033
  • Faeder, J., Ladanyi, B., (2001) J. Phys. Chem. B, 105, p. 11148
  • Faeder, J., Ladanyi, B., (2005) J. Phys. Chem. B, 109, p. 6732
  • Laria, D., Kapral, R., (2002) J. Chem. Phys, 117, p. 7712
  • Tobias, D.M., Klein, M.L., (1996) J. Phys. Chem, 100, p. 6637
  • Senapati, S., Berkowitz, M.L., (2003) J. Phys. Chem. B, 107, p. 12906
  • Senapati, S., Berkowitz, M.L., (2003) J. Chem. Phys, 118, p. 1937
  • Salaniwal, S., Cui, S.T., Cummings, P.T., Cochran, H.D., (1999) Langmuir, 15, p. 5188
  • Abel, S., Sterpone, F., Bandyopadhyay, S., Marchi, M., (2004) J. Phys. Chem. B, 708, p. 19458
  • Abel, S., Waks, M., Marchi, M., Urbach, W., (2006) Langmuir, 22, p. 9112
  • Allen, R., Bondyopadhyay, S., Klein, M.L., (2000) Langmuir, 16, p. 10547
  • Warshel, A., (1980) Computer Modeling of Chemical Reactions in Enzymes and Solutions, , Wiley: New York
  • Aqvist, J., Warshel, A., (1993) Chem. Rev, 93, p. 2523
  • Voth, G.A., (2006) Acc. Chem. Res, 39, p. 143. , For recent applications of MS-EVB schemes for protons in aqueous and biomolecular systems, see
  • Lobaugh, J., Voth, G.A., (1996) J. Chem. Phys, 104, p. 2056
  • Schmitt, U.W., Voth, G.A., (1998) J. Chem. Phys. B, 102, p. 5547
  • Schmitt, U.W., Voth, G.A., (1999) J. Chem. Phys, 111, p. 9361
  • Day, T.J.F., Schmitt, U.W., Voth, G.A., (2000) J. Am. Chem. Soc, 122, p. 12027
  • Day, T.J.F., Soudackov, A.V., Cuma, M., Schmitt, U.W., Voth, G.A., (2002) J. Chem. Phys, 117, p. 5839
  • Vuilleumier, R., Borgis, D., (1998) J. Phys. B, 102, p. 4261
  • Vuilleumier, R., Borgis, D., (1998) Chem. Phys. Lett, 284, p. 71
  • Vuilleumier, R., Borgis, D., (1998) Classical and Quantum Dynamics in Condensed Phase Simulations, , Berne, B. J, Ciccotti, G, Coker, D. F, Eds, World Scientific: Singapore, Chapter 30
  • Vuilleumier, R., Borgis, D., (1999) J. Chem. Phys, 111, p. 4251
  • Sagnella, D.E., Tuckerman, M.E., (1998) J. Chem. Phys, 108, p. 2073
  • Brancato, G., Tuckerman, M.E., (2005) J. Chem. Phys, 122, p. 224507
  • Kornyshev, A.A., Kuznetsov, A.M., Spohr, E., Ulstrup, J., (2003) J. Phys. Chem. B, 107, p. 3351
  • Walbran, S., Kornyshev, A.A., (2001) J. Chem. Phys, 114, p. 10039
  • Laria, D., Martí, J., Guardia, E., (2004) J. Am. Chem. Soc, 126, p. 2125
  • Petersen, M.K., Voth, G.A., (2006) J. Phys. Chem. B, 110, p. 7085
  • Spohr, E., Commer, P., Kornyshev, A.A., (2002) J. Phys. Chem. B, 106, p. 10560
  • Petersen, M.K., Wang, F., Blake, N.P., Metiu, H., Voth, G.A., (2005) J. Phys. Chem. B, 109, p. 3727
  • Petersen, M.K., Voth, G.A., (2006) J. Phys. Chem. B, 110, p. 18594
  • Tepper, H.L., Voth, G.A., (2006) J. Phys. Chem. B, 110, p. 21327
  • Dang, L.X., Pettit, B.M., (1987) J. Chem. Phys, 91, p. 3349
  • Berendsen, H.J.C., van der Spoel, D., van Drunen, R., (1995) Comput. Phys. Comm, 91, p. 43
  • Lindahl, E., Hess, B., van der Spoel, D., (2001) J. Mol. Modell, 7, p. 306
  • Schuettelkope, A.W., van Aalten, D.M.F., (2004) Acta Crystallogr, D60, p. 1355
  • Guss, L.S., Kolthoff, I.M., (1940) J. Am. Chem. Soc, 62, p. 1494
  • Fillingim, T.G., Luo, N., Lee, J., Robinson, G.W., (1990) J. Phys. Chem, 94, p. 6368
  • De Lisi, R., Goffredi, M., (1971) Electrochim. Acta, 76, p. 2181
  • Morrone, J.A., Haslinger, K.E., Tuckerman, M.E., (2006) J. Phys. Chem. B, 110, p. 3712
  • Zundel, G., Metzger, H., (1968) Z. Phys. Chem, 244, p. 456
  • Eigen, M., de Maeyer, L., (1958) Proc. R. Soc. (London), A247, p. 505
  • A slightly different, although equivalent, estimate was provided in ref 40; Chandler, D., (1987) Introduction to Modern Statistical Mechanics, , Oxford University Press: New York, Chapter 8
  • Hadas, L., Agmon, N., Pettersen, M.K., Voth, G.A., (2005) J. Chem. Phys, 122, p. 14506. , See, for example, and references therein
  • This connectivity pattern has been found in micelles (see ref 24) and also in lamellar phases of H2O-C12E2; see Bandyopadhyay, S, Tarek, M, Lynch, M. L, Klein, M. L. Langmuir 2000, 16, 942; In fact, the correlation also presents also a short-time transient, which is not related with the proton-transfer process; Petersen, M.K., Srinivasan, S.I., Day, T.J.F., Voth, G.A., (2004) J. Phys. Chem. B, 108, p. 14804
  • Pal, S., Vishal, G., Gandhi, K.S., Ayappa, K.G., (2005) Langmuir, 21, p. 767
  • Mucha, M., Frigato, T., Levering, L.M., Allen, H.C., Tobias, D.J., Dang, L.X., Jungwirth, P., (2005) J. Phys. Chem. B, 109, p. 7617

Citas:

---------- APA ----------
Rodriguez, J., Martí, J., Guàrdia, E. & Laria, D. (2007) . Protons in non-ionic aqueous reverse micelles. Journal of Physical Chemistry B, 111(17), 4432-4439.
http://dx.doi.org/10.1021/jp0703410
---------- CHICAGO ----------
Rodriguez, J., Martí, J., Guàrdia, E., Laria, D. "Protons in non-ionic aqueous reverse micelles" . Journal of Physical Chemistry B 111, no. 17 (2007) : 4432-4439.
http://dx.doi.org/10.1021/jp0703410
---------- MLA ----------
Rodriguez, J., Martí, J., Guàrdia, E., Laria, D. "Protons in non-ionic aqueous reverse micelles" . Journal of Physical Chemistry B, vol. 111, no. 17, 2007, pp. 4432-4439.
http://dx.doi.org/10.1021/jp0703410
---------- VANCOUVER ----------
Rodriguez, J., Martí, J., Guàrdia, E., Laria, D. Protons in non-ionic aqueous reverse micelles. J Phys Chem B. 2007;111(17):4432-4439.
http://dx.doi.org/10.1021/jp0703410