Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Steady-state and time-resolved emission spectroscopy (TRES) of the medium-sensitive probes 4-aminoph-thalimide (4-AP) and 6-propionyl-2- (dimethylamino)naphthalene (Prodan) were performed at 77 and 298 K in vacuum-sealed thin films of poly (vinyl alcohol) (PVA) and poly (vinyl acetate) (PVAc). The two probes show similar red-edge effect in steady state emission and a red shift with time in TRES in PVA. In PVAc the red shifts are much smaller and the spectral shift for 4-AP is slower. 4-AP locates in highly polar environments in PVA, where H-bond interaction with the polymer is important. Prodan locates in less polar environments, as evidenced by the position of the emission maximum with respect to reference solvents. Consequently, the observed monoexponential spectral red shift with time of 4-AP in PVA and in PVAc is attributed to relaxation of the interaction of the probe with the hydroxy and acetate moieties, respectively. The more intense interaction of the lighter -OH moiety with the probes explains the greater and faster spectral shift observed in PVA compared to PVAc. The lifetime of this monoexponential spectral shift is independent of temperature in PVA and takes place with a highly negative activation entropy. This fact is attributed to a collective rearrangement of -OH groups to better interact with the excited state. This relaxation nevertheless does not account for the complete accommodation of the excited state. Prodan shows a linear variation of the spectral shift with time that can be explained by microheterogeneity. In PVA, the width at half-maximum of the emission spectra does not change with time for Prodan and it decays with a lifetime similar to the lifetime of the spectral shift in the case of 4-AP. The differences in the behavior of the probes are attributed to their different average location in the polymer matrix. © 2005 American Chemical Society.

Registro:

Documento: Artículo
Título:Relaxations in poly(vinyl alcohol) and in poly(vinyl acetate) detected by fluorescence emission of 4-aminophthalimide and prodan
Autor:Barja, B.C.; Chesta, C.; Atvars, T.D.Z.; Aramendía, P.F.
Filiación:INQUIMAE, Department Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
Departamento de Física y Química, Universidad Nacional de Río Cuarto, 5800 Rio Cuarto, Argentina
Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, Campinas, 13083-970, SP, Brazil
Palabras clave:Entropy; Fluorescence; Hydrogen bonds; Light emission; Nitrogen compounds; Polyvinyl acetates; Polyvinyl alcohols; Probes; Solvents; Thermal effects; Thin films; Polymer matrix; Prodan; Spectral shifts; Time-resolved emission spectroscopy (TRES); Relaxation processes
Año:2005
Volumen:109
Número:33
Página de inicio:16180
Página de fin:16187
DOI: http://dx.doi.org/10.1021/jp050844a
Título revista:Journal of Physical Chemistry B
Título revista abreviado:J Phys Chem B
ISSN:15206106
CODEN:JPCBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v109_n33_p16180_Barja

Referencias:

  • Swanson, S.A., Wallraff, G.M., Chen, J.P., Zhang, W., Bozano, L.D., Carter, K.R., Salem, J.R., Scott, J.C., (2003) Chem. Mater., 15, p. 2305
  • Tamai, N., Miyasaka, H., (2000) Chem. Rev., 100, p. 1875
  • Wolfbeis, O.S., (1991) Fiber Optic Chemical Sensors and Biosensors, 2. , CRC Press: Boca Raton, FL
  • Ichimura, K., (1999) Photochromic Polymers in Organic Photochromic and Thermochromic Compounds, 2. , Crano, J. C.; Guglielmetti, R. J., Eds. Kluwer Academic/Plenum Publishers: New York
  • Verhey, H.J., Gebben, B., Hofstraat, J.W., Verhoeven, J.W., (1995) J. Appl. Polym. Sci. A: Polym. Chem., 33, p. 399
  • Rharbi, Y., Yekta, A., Winnik, M.A., (1999) Anal. Chem., 71, p. 5045
  • Zimerman, O.E., Weiss, R.G., (1998) J. Phys. Chem. A, 102, p. 5364
  • Datta, A., Das, S., Mandal, D., Pal, K., Bhattacharyya, K., (1997) Langmuir, 13, p. 6922
  • Prado, E.A., Yamaki, S.B., Atvars, T.D.Z., Zimerman, O.E., Weiss, R.G., (2000) J. Phys. Chem. B., 104, p. 5905
  • Dibbern-Brunelli, D., Atvars, T.D.Z., (1995) J. Appl. Polym. Sci., 55, p. 889
  • Dibbern-Brunelli, D., Atvars, T.D.Z., Joekes, I., Barbosa, V.C., (1998) J. Appl. Polym. Sci., 69, p. 645
  • RamachandraRao, V.S., Watkins, J.J., (2000) Macromolecules, 33, p. 5143
  • Dibbern-Brunelli, D., Atvars, T.D.Z., (2000) J. Appl. Polym. Sci., 75, p. 815
  • Raja, R.A., Raju, B.B., Varadarajan, T.S., (1994) J. Appl. Polym. Sci., 54, p. 827
  • Loutfy, R.O., Fluorescence probes for polymer free volume (1986) Photophysical and Photochemical Tools in Polymer Science, pp. 429-448. , Winnik, M. A., Ed.; Kluwer Academic/D. Reidel Publishing Co.: New York
  • Al-Hassan, K.A., Rettig, W., (1986) Chem. Phys. Lett., 126, p. 273
  • Vallee, R.A.L., Cotlet, M., Van Der Auweraer, M., Hofkens, J., Müllen, K., De Schryver, F.C., (2004) J. Am. Chem. Soc., 126, p. 2296
  • Lin, K.F., Wang, F.W., (1994) Polymer, 35, p. 687
  • Vatanparast, R., Li, S., Hakala, K., Lemmetyinen, H., (2000) Macromolecules, 33, p. 438
  • Hakala, K., Vatanparast, R., Li, S., Peinado, C., Bosch, P., Catalina, F., Lemmetyinen, H., (2000) Macromolecules, 33, p. 5954
  • Phelan, J.C., Sung, C.S.P., (1997) Macromolecules, 30, p. 6837
  • Lakowicz, J.R., (1999) Principles of Fluorescence Spectroscopy, 2nd Ed., , Kluwer Academic/Plenum Publishers: New York
  • Valeur, B., (2002) Molecular Fluorescence, , Wiley VCH: Weinheim
  • Williams, M.L., Landel, R.F., Ferry, J.D., (1955) J. Am. Chem. Soc., 77, p. 3701
  • Dutta, P., Sukul, Sen, D.S., Bhattacharyya, K., (2003) Phys. Chem. Chem. Phys., 5, p. 4875
  • Keeling-Tucker, T., Brennan, J.D., (2001) Chem. Mater., 13, p. 3331
  • Hall, D.B., Hamilton, K.E., Miller, R.D., Torkelson, J.M., (1999) Macromolecules, 32, p. 8052
  • Plonka, A., (1998) Ann. Rep. Prog. Chem., 94 C, p. 89
  • Thouvenin, M., Linossier, I., Sire, O., Peron, J.J., Vallee-Rehel, K., (2002) Macromolecules, 35, p. 489
  • Ware, W.R., Lee, S.K., Brant, G.J., Chow, P.P., (1971) J. Chem. Phys., 54, p. 4729
  • Soujanya, T., Krishna, T.S.R., Samanta, A., (1992) J. Phys. Chem., 96, p. 8544
  • Chapman, C.F., Fee, R.S., Maroncelli, M., (1995) J. Phys. Chem., 99, p. 4811
  • Suppan, P.J., (1987) J. Chem. Soc., Faraday. Trans. 1, 83, p. 495
  • Das, S., Datta, A., Bhattacharyya, K., (1997) J. Phys. Chem. A., 101, p. 3299
  • Saroya, G., Samanta, A., (1996) J. Chem. Soc., Faraday Trans., 92, p. 2697
  • Ingram, J.A., Moog, R.S., Ito, N., Biswas, R., Maroncelli, M., (2003) J. Phys. Chem. B., 107, p. 5926
  • Weber, G., Farris, F.J., (1979) Biochemistry, 18, p. 3075
  • Huang, M.H., Soyez, H.M., Dunn, B.S., Zink, J.I., (2000) Chem. Mater., 12, p. 231
  • Flora, K.K., Brennan, J.D., (2001) J. Phys. Chem. B., 105, p. 12003
  • Gratton, E., (1990) Biophys. J., 57, p. 1179
  • Gvish, R., Narang, U., Bright, F.V., Prasad, P.N., (1995) Chem. Mater., 7, p. 1703
  • Viard, M., Gallay, J., Vincent, M., Meyer, O., Robert, B., Paternoster, M., (1997) Biophys. J., 73, p. 2221
  • Mazurenko, Y.T., Bakhshiev, N.K., (1970) Opt. Spectrosc., 28, p. 490
  • Itoh, K., Azumi, T., (1973) Chem. Phys. Lett., 22, p. 395
  • Itoh, K., Azumi, T., (1975) J. Chem. Phys., 62, p. 3431
  • Azumi, T., Itoh, K., Shiraishi, H., (1976) J. Chem. Phys., 65, p. 2550
  • Wetzler, D.E., Chesta, C., Fernández-Prini, R.J., Aramendía, P.F., (2002) J. Phys. Chem. A., 106, p. 2390
  • Soujanya, T., Fessenden, R.W., Samanta, A., (1996) J. Phys. Chem., 100, p. 3507
  • McGill, R., Paley, M., Harris, J., (1992) Macromolecules., 25, p. 3015
  • Betts, T.A., Bright, F.V., (1990) Appl. Spectrosc., 44, p. 1203
  • Wetzler, D.E., Fernández-Prini, R., Aramendía, P.F., (2004) Chem. Phys., 305, p. 27
  • Levitus, M., Talhavini, M., Negri, R.M., Atvars, T.D.Z., Aramendía, P.F., (1997) J. Phys. Chem. B., 101, p. 7680
  • Biswas, R., Nandi, N., Bagchi, B., (1997) J. Phys. Chem. B., 101, p. 2968

Citas:

---------- APA ----------
Barja, B.C., Chesta, C., Atvars, T.D.Z. & Aramendía, P.F. (2005) . Relaxations in poly(vinyl alcohol) and in poly(vinyl acetate) detected by fluorescence emission of 4-aminophthalimide and prodan. Journal of Physical Chemistry B, 109(33), 16180-16187.
http://dx.doi.org/10.1021/jp050844a
---------- CHICAGO ----------
Barja, B.C., Chesta, C., Atvars, T.D.Z., Aramendía, P.F. "Relaxations in poly(vinyl alcohol) and in poly(vinyl acetate) detected by fluorescence emission of 4-aminophthalimide and prodan" . Journal of Physical Chemistry B 109, no. 33 (2005) : 16180-16187.
http://dx.doi.org/10.1021/jp050844a
---------- MLA ----------
Barja, B.C., Chesta, C., Atvars, T.D.Z., Aramendía, P.F. "Relaxations in poly(vinyl alcohol) and in poly(vinyl acetate) detected by fluorescence emission of 4-aminophthalimide and prodan" . Journal of Physical Chemistry B, vol. 109, no. 33, 2005, pp. 16180-16187.
http://dx.doi.org/10.1021/jp050844a
---------- VANCOUVER ----------
Barja, B.C., Chesta, C., Atvars, T.D.Z., Aramendía, P.F. Relaxations in poly(vinyl alcohol) and in poly(vinyl acetate) detected by fluorescence emission of 4-aminophthalimide and prodan. J Phys Chem B. 2005;109(33):16180-16187.
http://dx.doi.org/10.1021/jp050844a