Abstract:
Much work has been done on the study of the biochemical mechanisms that result in ultrasensitive behavior of simple biochemical modules. However, in a living cell, such modules are embedded in a bigger network that constrains the range of inputs that the module will receive as well as the range of the module's outputs that network will be able to detect. Here, we studied how the effective ultrasensitivity of a modular system is affected by these restrictions. We use a simple setup to explore to what extent the dynamic range spanned by upstream and downstream components of an ultrasensitive module impact on the effective sensitivity of the system. Interestingly, we found for some ultrasensitive motifs that dynamic range limitations imposed by downstream components can produce effective sensitivities much larger than that of the original module when considered in isolation. © 2014 IOP Publishing Ltd.
Registro:
Documento: |
Artículo
|
Título: | Impact of upstream and downstream constraints on a signaling module's ultrasensitivity |
Autor: | Altszyler, E.; Ventura, A.; Colman-Lerner, A.; Chernomoretz, A. |
Filiación: | Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Buenos Aires, C1428EHA, Argentina Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Universidad de Buenos Aires, Pabellón 2, Buenos Aires, C1428EHA, Argentina Laboratorio de Biología de Sistemas Integrativa, Fundación Instituto Leloir, Buenos Aires, C1405BWE, Argentina
|
Palabras clave: | dynamic range; Signaling; transfer function; ultrasensitivity; biological model; kinetics; signal transduction; Kinetics; Models, Biological; Signal Transduction |
Año: | 2014
|
Volumen: | 11
|
Número: | 6
|
DOI: |
http://dx.doi.org/10.1088/1478-3975/11/6/066003 |
Título revista: | Physical Biology
|
Título revista abreviado: | Phys. Biol.
|
ISSN: | 14783967
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14783967_v11_n6_p_Altszyler |
Referencias:
- Alon, U., (2006) An Introduction to Systems Biology, , London, UK: Chapman & Hall
- Ang, J., Harris, E., Hussey, B.J., Kil, R., McMillen, D.R., Tuning response curves for synthetic biology (2013) ACS Synthetic Biology, 2, pp. 547-567
- Angeli, D., Ferrell, J.E., Sontag, E.D., Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems (2004) PNAS, 101, pp. 1822-1827
- Berg, O.G., Paulsson, J., Ehrenberg, M., Fluctuations and quality of control in biological cells: Zero-order ultrasensitivity reinvestigated (2000) Biophys. J., 79, pp. 1228-1236
- Benner, S.A., Sismour, A.M., Synthetic Biology (2005) Nat. Rev. Genet, 6, pp. 533-543
- Bluthgen, N., Herzel, H., How robust are switches in intracellular signaling cascades (2003) J. of Theoretical Biology, 225, pp. 293-300
- Bluthgen, N., Bruggeman, F.J., Legewie, S., Herzel, H., Westerhoff, H.V., Kholodenko, B.N., Effects of sequestration on signal transduction cascades (2006) FEBS Journal, 273, pp. 895-906
- Brown, G.C., Hoek, J.B., Kholodenko, B.N., Why do protein kinase cascades have more than one level? (1997) Trends Biochem. Sci., 22, p. 288
- Buchler, N.E., Louis, M., Molecular titration and ultrasensitivity in regulatory networks (2008) J. Mol. Biol., 384, pp. 1106-1119
- Buchler, N.E., Cross, F.R., Protein sequestration generates a flexible ultrasensitive response in a genetic network (2009) Mol. Syst. Biol., 5, p. 272
- Del Vecchio, D., Ninfa, A., Sontag, E., Modular cell biology: Retroactivity and insulation (2008) Mol. Sys. Biol., 4, p. 161
- Ferrell, J.E., Tripping the switch fantastic: How a protein kinase cascade can convert graded inputs into switch-like outputs (1996) Trends Biochem. Sci., 21, pp. 460-466
- Ferrell, J.E., How responses get more switch-like as you move down a protein kinase cascade (1997) Trends Biochem. Sci., 22, pp. 288-289
- Ferrell, J.E., How regulated protein translocation can produce switch-like responses (1998) Trends in Biomedical Sciences, 23, pp. 461-465
- Ferrell, J.E., Xiong, W., Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible (2001) Chaos, 11, pp. 227-236
- Goldbeter, A., Koshland, D.E., An amplified sensitivity arising from covalent modification in biological systems (1981) PNAS, 78, pp. 6840-6844
- Goldbeter, A., Koshland, D.E., Sensitivity amplification in biochemical systems (1982) Q. Rev. Biophys., 15, pp. 555-591
- Gomez-Uribe, C., Verghese, G.C., Mirny, L.A., Operating regimes of signaling cycles: Statics, dynamics, and noise filtering (2007) PLoS Comput. Biol., 3, p. 246
- Gunawardena, J., Multisite protein phosphorylation makes a good threshold but can be a poor switch (2005) PNAS, 102, pp. 14617-14622
- Hartwell, L.H., Hopfield, J.J., Stanislas Leibler, S., Murray, A.W., From molecular to modular cell biology (2000) Nature, 402, pp. 47-C52
- Hooshangi, S., Thiberge, S., Weiss, R., Ultrasensitivity and noise propagation in a synthetic transcriptional cascade (2005) Proc. Natl. Acad. Sci. USA, 8, pp. 3581-3586
- Huang, C.-Y.F., Ferrell, J.E., Ultrasensitivity in the mitogen-activated protein kinase cascade (1996) Proc. Proc. Natl. Acad. Sci., 93, pp. 10078-10083
- Kholodenko, B.N., Hoek, J.B., Westerhoff, H.V., Brown, G.C., Quantification of information transfer via cellular signal transduction pathways (1997) FEBS Letters, 414, pp. 430-434
- Kholodenko, B.N., Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades (2000) Eur. J. Biochem., 267, pp. 1583-1588
- Kholodenko, B.N., Kiyatkin, A., Bruggeman, F.J., Sontag, E., Westerhoff, H.V., Hoek, J.B., Untangling the wires: A strategy to trace functional interactions in signaling and gene networks (2002) Proc. Natl. Acad. Sci., 99, pp. 12841-12846
- Kittleson, J.T., Wu, G.C., Anderson, J.C., Successes and failures in modular genetic engineering (2012) Current Opinion in Chemical Biology, 16, pp. 329-336
- Markevich, N.I., Hoek, J.B., Kholodenko, B.N., Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades (2004) J. Cell Biol., 164, p. 353
- O'Shaughnessy, E.C., Palani, S., Collins, J.J., Sarkar, C.A., Tunable signal processing in synthetic MAP kinase cascades (2011) Cell, 7, pp. 119-131
- Paulsson, J., Models of stochastic gene expression (2005) Physics of Life Reviews, 2, pp. 157-175
- Racz, E., Slepchenko, B.M., On sensitivity amplification in intracellular signaling cascades (2008) Phys. Biol., 5 (3), pp. 036004-036012
- Raj, A., Van Oudenaarden, A., Nature, nurture, or chance: Stochastic gene expression and its consequences (2008) Cell, 135, pp. 216-226
- Ray, J.C., Tabor, J.J., Igoshin, O.A., Non-transcriptional regulatory processes shape transcriptional network dynamics (2011) Nat. Rev. Microbiol., 9, pp. 817-828
- Ray, J.C., Igoshin, O.A., Interplay of gene expression noise and ultrasensitive dynamics affects bacterial operon organization (2012) PLoS Comput. Biol., 8, p. 1002672
- Rowland, M.A., Fontana, W., Deeds, E.J., Crosstalk and competition in signaling networks (2012) Biophys. J., 103, pp. 2389-2398
- Rippe, K., Analysis of protein-DNA binding in equilibrium (1997) B.I.F. Futura, 12, pp. 20-26
- Savageau, M.A., (1976) Biochemical Systems Analysis, , Boston, MA: Addison-Wesley
- Sneppen, K., Krishna, S., Semsey, S., Simplified models of biological networks (2010) Annu. Rev. Biophys., 39, pp. 43-59
- Srividhya, J., Li, Y., Pomerening, J.R., Open cascades as simple solutions to providing ultrasensitivity and adaptation in cellular signaling (2011) Phys. Biol., 8 (4)
- Thattai, M., Van Oudenaarden, A., Noise in gene regulatory networks (2001) Proc. Natl. Acad. Sci., 98, pp. 8614-8619
- Thattai, M., Van Oudenaarden, A., Attenuation of noise in signaling cascades (2002) Biophysical J., 82, pp. 2943-2950
- Tyson, J.J., Chen, K.C., Novak, B., Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell (2003) Curr. Opin. Cell Biol., 15, pp. 221-231
- Ventura, A.C., Sepulchre, J.A., Merajver, S.D., A hidden feedback in signaling cascades is revealed (2008) PLoS Comput. Biol., 4 (3)
- Voliotis, M., Perrett, R.M., McWilliams, C., McArdle, C.A., Bowsher, C.G., Information transfer by leaky, heterogeneous, protein kinase signaling systems (2014) Proc. Natl. Acad. Sci., 111, pp. 326-E333
- Zhang, Q., Bhattacharya, S., Andersen, M.E., Ultrasensitive response motifs: Basic amplifiers in molecular signalling networks (2013) Open Biol., 3
Citas:
---------- APA ----------
Altszyler, E., Ventura, A., Colman-Lerner, A. & Chernomoretz, A.
(2014)
. Impact of upstream and downstream constraints on a signaling module's ultrasensitivity. Physical Biology, 11(6).
http://dx.doi.org/10.1088/1478-3975/11/6/066003---------- CHICAGO ----------
Altszyler, E., Ventura, A., Colman-Lerner, A., Chernomoretz, A.
"Impact of upstream and downstream constraints on a signaling module's ultrasensitivity"
. Physical Biology 11, no. 6
(2014).
http://dx.doi.org/10.1088/1478-3975/11/6/066003---------- MLA ----------
Altszyler, E., Ventura, A., Colman-Lerner, A., Chernomoretz, A.
"Impact of upstream and downstream constraints on a signaling module's ultrasensitivity"
. Physical Biology, vol. 11, no. 6, 2014.
http://dx.doi.org/10.1088/1478-3975/11/6/066003---------- VANCOUVER ----------
Altszyler, E., Ventura, A., Colman-Lerner, A., Chernomoretz, A. Impact of upstream and downstream constraints on a signaling module's ultrasensitivity. Phys. Biol. 2014;11(6).
http://dx.doi.org/10.1088/1478-3975/11/6/066003