Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The kinetics of the reaction between aqueous solutions of Na 2[Fe(CN)5NO]•2H2O (sodium pentacyanonitrosylferrate(ii), nitroprusside, SNP) and MeN(H)OH (N-methylhydroxylamine, MeHA) has been studied by means of UV-vis spectroscopy, using complementary solution techniques: FTIR/ATR, EPR, mass spectrometry and isotopic labeling (15NO), in the pH range 7.1-9.3, I = 1 M (NaCl). The main products were N-methyl-N-nitrosohydroxylamine (MeN(NO)OH) and [Fe(CN)5H2O]3-, characterized as the [Fe(CN)5(pyCONH2)]3- complex (pyCONH 2 = isonicotinamide). No reaction occurred with Me2NOH (N,N-dimethylhydroxylamine, Me2HA) as nucleophile. The rate law was: R = kexp [Fe(CN)5NO2-] × [MeN(H)OH] × [OH-], with kexp = 1.6 ± 0.2 × 105 M-2 s-1, at 25.0 °C, and ΔH # = 34 ± 3 kJ mol-1, ΔS# = -32 ± 11 J K-1 mol-1, at pH 8.0. The proposed mechanism involves the formation of a precursor associative complex between SNP and MeHA, followed by an OH--assisted reversible formation of a deprotonated adduct, [Fe(CN)5(N(O)NMeOH)]3-, and rapid dissociation of MeN(NO)OH. In excess SNP, the precursor complex reacts through a competitive one-electron-transfer path, forming the [Fe(CN)5NO]3- ion with slow production of small quantities of N2O. The stoichiometry and mechanism of the main adduct-formation path are similar to those previously reported for hydroxylamine (HA) and related nucleophiles. The nitrosated product, MeN(NO)OH, decomposes thermally at physiological temperatures, slowly yielding NO. © The Royal Society of Chemistry 2008.

Registro:

Documento: Artículo
Título:Nitrosation of N-methylhydroxylamine by nitroprusside. A kinetic and mechanistic study
Autor:Gutiérrez, M.M.; Alluisetti, G.B.; Olabe, J.A.; Amorebieta, V.T.
Filiación:Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina
Department of Inorganic, Analytical and Physical Chemistry, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
Palabras clave:Chemical reactions; Reaction kinetics; Sodium; Aqueous solutions; Mechanistic studies; Nitrosation; Solutions; hydroxylamine; n methylhydroxylamine; N-methylhydroxylamine; nitroprusside sodium; article; chemical model; chemistry; electron spin resonance; infrared spectroscopy; kinetics; mass spectrometry; methodology; nitrosation; pH; time; ultraviolet spectrophotometry; Electron Spin Resonance Spectroscopy; Hydrogen-Ion Concentration; Hydroxylamines; Kinetics; Mass Spectrometry; Models, Chemical; Nitroprusside; Nitrosation; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Time Factors
Año:2008
Número:37
Página de inicio:5025
Página de fin:5030
DOI: http://dx.doi.org/10.1039/b805329d
Título revista:Dalton Transactions
Título revista abreviado:Dalton Trans.
ISSN:14779226
CAS:hydroxylamine, 7803-49-8; n methylhydroxylamine, 593-77-1; nitroprusside sodium, 14402-89-2, 15078-28-1; Hydroxylamines; N-methylhydroxylamine, 593-77-1; Nitroprusside, 15078-28-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14779226_v_n37_p5025_Gutierrez

Referencias:

  • Ford, P.C., Lorkovic, I.M., (2002) Chem. Rev., 102, p. 993
  • Roncaroli, F., Videla, M., Slep, L.D., Olabe, J.A., (2007) Coord. Chem. Rev., 251, p. 1903
  • Ignarro, J.L.E., (2000) Nitric Oxide, Biology and Photobiology, , Academic Press, San Diego, CA
  • (1996) Methods in Nitric Oxide Research, Ed., , M. Feelisch and J. S. Stamler, Wiley, New York
  • Richter-Addo, G.B., Legdzins, P., (1992) Metal Nitrosyls, , Oxford University Press, New York
  • McCleverty, J.A., (2004) Chem. Rev., 104, p. 403
  • Bottomley In, F., (1989) Reactions of Coordinated Ligands, Ed., , P. S. Braterman, Plenum Publishing Corp., New York
  • Olabe, J.A., (2004) Adv. Inorg. Chem., 55, p. 61
  • Butler, A.R., Megson, I.L., (2002) Chem. Rev., 102, p. 1155
  • Swinehart, J.H., Rock, P.A., (1966) Inorg. Chem., 5, p. 573
  • Masek, J., Wendt, H., (1969) Inorg. Chim. Acta, 3, p. 455
  • Katz, N.E., Blesa, M.A., Olabe, J.A., Aymonino, P.J., (1980) J. Inorg. Nucl. Chem., 42, p. 581
  • MacIejowska, I., Stasicka, Z., Stochel, G., Van Eldik, R., (1999) J. Chem. Soc., Dalton Trans., p. 3643
  • Dozsa, L., Kormos, V., Beck, M.T., (1984) Inorg. Chim. Acta, 82, p. 69
  • Katho, A., Bodi, Z., Dozsa, L., Beck, M.T., (1984) Inorg. Chim. Acta, 83, p. 145
  • Wolfe, S.K., Andrade, C., Swinehart, J.H., (1974) Inorg. Chem., 13, p. 2567
  • Fernandez, B.O., Ford, P.C., (2003) J. Am. Chem. Soc., 125, p. 10510
  • Johnson, M.D., Wilkins, R.G., (1984) Inorg. Chem., 23, p. 231
  • Roncaroli, F., Ruggiero, M.E., Franco, D.W., Estiu, G.L., Olabe, J.A., (2002) Inorg. Chem., 41, p. 5760
  • Gutiérrez, M.M., Amorebieta, V.T., Estiu, G.L., Olabe, J.A., (2002) J. Am. Chem. Soc., 124, p. 10307
  • Taira, J., Misil, V., Riesz, P., (1997) Biochim. Biophys. Acta, 1336, p. 502
  • Thomas, G., Ramwell, P.W., (1989) Biochem. Biophys. Res. Commun., 164, p. 889
  • Wieghardt, K., (1984) Adv. Inorg. Bioinorg. Mech., 3, p. 213
  • Wasser, I.M., De Vries, S., Moënne-Loccoz, P., Schröder, I., Karlin, K.D., (2002) Chem. Rev., 102, p. 1201
  • Chacón Villalba, M.E., Varetti, E.L., Aymonino, P.J., (1997) Vib. Spectrosc., 14, p. 275
  • Marvel, C.S., Kamm, O., (1919) J. Am. Chem. Soc., 41, p. 276
  • Stolze, K., Nohl, H., (1990) Free Radical Res. Commun., 8, p. 123
  • Noël, M.A.M., Allendoerfer, R.E., Osteryoung, R.A., (1992) J. Phys. Chem., 96, p. 2391
  • Testa, J.J., Grela, M.A., Litter, M.I., (2004) Environ. Sci. Technol., 38, p. 1589
  • Alluisetti, G.B., Almaraz, A.E., Amorebieta, V.T., Doctorovich, F., Olabe, J.A., (2004) J. Am. Chem. Soc., 126, p. 13432
  • Toma, H.E., (1975) Inorg. Chim. Acta, 15, p. 205
  • Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, p. 1039
  • Gutiérrez, M.M., Alluisetti, G.B., Amorebieta Unpublished Work, V.T., ; Schwane, J.D., Ashby, M.T., (2002) J. Am. Chem. Soc., 124, p. 6822
  • Morando, P.J., Bruyère, V.I.E., Blesa, M.A., Olabe, J.A., (1983) Transition Met. Chem., 8, p. 999
  • Keefer, L.K., Flippen-Anderson, J.L., George, C., Shanklin, A.P., Tambra, M., Dunams, D.C., Saavedra, J.E., Bohle, D.S., (2001) Nitric Oxide, 5, p. 377
  • Hrabie, J.A., Keefer, L.K., (2002) Chem. Rev., 102, p. 1135
  • Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, p. 2080
  • Szacilowski, K., Oszajca, J., Barbieri, A., Karocki, A., Sojka, Z., Sostero, S., Boaretto, R., Stasicka, Z., (2001) J. Photochem. Photobiol., A, 143, p. 99
  • Grossi, L., D'Angelo, S., (2005) J. Med. Chem., 48, p. 2622. , and references therein
  • Wilkins, R.G., (1991) Kinetics and Mechanisms of Reactions of Transition Metal Complexes, , VCH Verlag, Weinheim, Germany, 2nd edn
  • Olabe, J.A., Estiú, G.L., (2003) Inorg. Chem., 42, p. 4873
  • note; note; Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T., Janczuk, A.J., (2002) Chem. Rev., 102, p. 1091. , A question remains on the accessibility of the electron-transfer path in excess of MeHA. The reproducible 95% yield of SNP conversion (predominance of the addition path) suggests that a minor contribution of the electron-transfer path might be operative, although no direct EPR evidence has been obtained. Anyway, we may propose a reasonable explanation for the significant contribution of the electron-transfer path under excess SNP conditions, given that NO + maintains its oxidizing ability in the precursor complex. On the other hand, with an excess of MeHA, the adduct-formation path becomes much favored because of the H-bonding stabilization of the adduct, associated with the specific interactions between MeHA and the donor cyano-ligands38
  • Estrin, D.A., Baraldo, L.M., Slep, L.D., Barja, B.C., Olabe, J.A., Paglieri, L., Corongiu, G., (1996) Inorg. Chem., 35, p. 3897
  • Morando, P., Borghi, E.B., Schteingart, L.M., Blesa, M.A., (1981) J. Chem. Soc., Dalton Trans., p. 435
  • Szacilowski, K., Wanat, A., Barbieri, A., Wasiliewska, E., Witko, M., Stochel, G., Stasicka, Z., (2002) New J. Chem., 26, p. 1495
  • Roncaroli, F., Van Eldik, R., Olabe, J.A., (2005) Inorg. Chem., 44, p. 2781
  • Tannenbaum, S.R., Tamir, S., De Rojas-Walker, T., Wishnok, J.S., (1994) ACS Symp. Ser., 553, p. 120

Citas:

---------- APA ----------
Gutiérrez, M.M., Alluisetti, G.B., Olabe, J.A. & Amorebieta, V.T. (2008) . Nitrosation of N-methylhydroxylamine by nitroprusside. A kinetic and mechanistic study. Dalton Transactions(37), 5025-5030.
http://dx.doi.org/10.1039/b805329d
---------- CHICAGO ----------
Gutiérrez, M.M., Alluisetti, G.B., Olabe, J.A., Amorebieta, V.T. "Nitrosation of N-methylhydroxylamine by nitroprusside. A kinetic and mechanistic study" . Dalton Transactions, no. 37 (2008) : 5025-5030.
http://dx.doi.org/10.1039/b805329d
---------- MLA ----------
Gutiérrez, M.M., Alluisetti, G.B., Olabe, J.A., Amorebieta, V.T. "Nitrosation of N-methylhydroxylamine by nitroprusside. A kinetic and mechanistic study" . Dalton Transactions, no. 37, 2008, pp. 5025-5030.
http://dx.doi.org/10.1039/b805329d
---------- VANCOUVER ----------
Gutiérrez, M.M., Alluisetti, G.B., Olabe, J.A., Amorebieta, V.T. Nitrosation of N-methylhydroxylamine by nitroprusside. A kinetic and mechanistic study. Dalton Trans. 2008(37):5025-5030.
http://dx.doi.org/10.1039/b805329d