Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Alginate hydrogels are suitable for the encapsulation of biomolecules and microorganisms for the building of bioactive materials. Several alternatives to the conventional alginate formulation are being studied for a broad range of biotechnological applications; among them the crosslinking of alginate by lanthanide cations, Ln(iii), envisages expanded biomedical applications. The performance of these functional materials is highly related to the microstructure of the alginate matrix, which in turn is affected by the conditions of synthesis. In particular, when a diffusing gradient of the crosslinking cation is involved, microstructure inhomogeneities are expected at the macroscopic level. Here we discuss the subtle differences in the microstructure, as assessed by SAXS (Small Angle X-ray Scattering), established in the direction of the gradient of diffusion of Ca(ii) or Ce(iii). © 2016 The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Ca(II) and Ce(III) homogeneous alginate hydrogels from the parent alginic acid precursor: A structural study
Autor:Sonego, J.M.; Santagapita, P.R.; Perullini, M.; Jobbágy, M.
Filiación:INQUIMAE-DQIAyQF, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Buenos Aires, Conicet, C1428EHA, Argentina
Departamento de Industrias-DQO, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Buenos Aires, Conicet, C1428EHA, Argentina
Palabras clave:Calcium; Functional materials; Hydrogels; Medical applications; Microstructure; Positive ions; X ray scattering; Acid precursors; Alginate hydrogels; Bioactive material; Biomedical applications; Biotechnological applications; Lanthanide cations; Macroscopic levels; Structural studies; Alginate
Año:2016
Volumen:45
Número:24
Página de inicio:10050
Página de fin:10057
DOI: http://dx.doi.org/10.1039/c6dt00321d
Título revista:Dalton Transactions
Título revista abreviado:Dalton Trans.
ISSN:14779226
CODEN:DTARA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14779226_v45_n24_p10050_Sonego

Referencias:

  • Drury, J.L., Mooney, D.J., Hydrogels for tissue engineering: Scaffold design variables and applications (2003) Biomaterials, 24 (24), pp. 4337-4351
  • Hoffman, A.S., Hydrogels for biomedical applications (2012) Adv. Drug Delivery Rev., 64, pp. 18-23
  • Gombotz, W.R., Wee, S.F., Protein release from alginate matrices (1998) Adv. Drug Delivery Rev., 31 (3), pp. 267-285
  • Smidsrod, O., Skjakbraek, G., Alginate as Immobilization Matrix for Cells (1990) Trends Biotechnol., 8 (3), pp. 71-78
  • Rowley, J.A., Madlambayan, G., Mooney, D.J., Alginate hydrogels as synthetic extracellular matrix materials (1999) Biomaterials, 20 (1), pp. 45-53
  • Perullini, M., Alginate/porous silica matrices for the encapsulation of living organisms: Tunable properties for biosensors, modular bioreactors, and bioremediation devices (2015) Mesoporous Biomater., 2, pp. 3-12
  • Perullini, M., Improving bacteria viability in metal oxide hosts via an alginate-based hybrid approach (2011) J. Mater. Chem., 21 (12), pp. 8026-8031
  • Augst, A.D., Kong, H.J., Mooney, D.J., Alginate hydrogels as biomaterials (2006) Macromol. Biosci., 6 (8), pp. 623-633
  • Spedalieri, C., Silica@proton-alginate microreactors: A versatile platform for cell encapsulation (2015) J. Mater. Chem. B, 3 (16), pp. 3189-3194
  • Brayner, R., Alginate-Mediated Growth of Co, Ni, and CoNi Nanoparticles: Influence of the Biopolymer Structure (2007) Chem. Mater., 19 (5), pp. 1190-1198
  • Agulhon, P., Controlled synthesis from alginate gels of cobalt-manganese mixed oxide nanocrystals with peculiar magnetic properties (2012) Catal. Today, 189 (1), pp. 49-54
  • Monakhova, Y., New mixed lanthanum- and alkaline-earth cation-containing basic catalysts obtained by an alginate route (2012) Catal. Today, 189 (1), pp. 28-34
  • Liu, F., Photoluminescent porous alginate hybrid materials containing lanthanide ions (2008) Biomacromolecules, 9 (7), pp. 1945-1950
  • Haug, A., Smidsrød, O., Strontium-Calcium Selectivity of Alginates (1967) Nature, 215 (5102), p. 757
  • Morais, D.S., Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute (2013) J. Mater. Sci.: Mater. Med., 24 (9), pp. 2145-2155
  • Balint, A., Synthesis of Nanoceria for Biomedical Applications (2014) International Conference on Advancements of Medicine and Health Care Through Technology, pp. 317-320. , 5th-7th June 2014, Cluj-Napoca, Romania: MEDITECH 2014, ed. S. Vlad and V. R. Ciupa, Springer International Publishing, Cham
  • Sahu, T., Nanoceria: Synthesis and biomedical applications (2013) Curr. Nanosci., 9 (5), pp. 588-593
  • Stokke, B.T., Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels. 1. Ca-Alginate Gels (2000) Macromolecules, 33 (5), pp. 1853-1863
  • Agulhon, P., Structural Regime Identification in Ionotropic Alginate Gels: Influence of the Cation Nature and Alginate Structure (2012) Biomacromolecules, 13 (1), pp. 215-220
  • Draget, K.I., Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels. 3. Alginic Acid Gels (2003) Biomacromolecules, 4 (6), pp. 1661-1668
  • Smidsrod, O., Properties of Poly(1,4-Hexuronates) in Gel State.2. Comparison of Gels of Different Chemical Composition (1972) Acta Chem. Scand., 26 (1), pp. 79-88
  • Skjakbraek, G., Grasdalen, H., Smidsrod, O., Inhomogeneous Polysaccharide Ionic Gels (1989) Carbohydr. Polym., 10 (1), pp. 31-54
  • Mikkelsen, A., Elgsaeter, A., Density distribution of calcium-induced alginate gels. A numerical study (1995) Biopolymers, 36 (1), pp. 17-41
  • Schuster, E., Microstructural, mechanical and mass transport properties of isotropic and capillary alginate gels (2014) Soft Matter, 10 (2), pp. 357-366
  • Draget, K.I., Braek, G.S., Smidsrod, O., Alginic Acid Gels - The Effect of Alginate Chemical-Composition and Molecular-Weight (1994) Carbohydr. Polym., 25 (1), pp. 31-38
  • Haug, A., Smidsrod, O., Larsen, B., Degradation of Alginates at Different pH Values (1963) Acta Chem. Scand., 17 (5), pp. 1466-1468
  • Major, J.L., Meade, T.J., Bioresponsive, Cell-Penetrating, and Multimeric MR Contrast Agents (2009) Acc. Chem. Res., 42 (7), pp. 893-903
  • Holz, M., Heil, S.R., Sacco, A., Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements (2000) Phys. Chem. Chem. Phys., 2 (20), pp. 4740-4742
  • Stejskal, E.O., Tanner, J.E., Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient (1965) J. Chem. Phys., 42 (1), pp. 288-292
  • Schaefer, D.W., Keefer, K.D., Fractal Geometry of Silica Condensation Polymers (1984) Phys. Rev. Lett., 53 (14), pp. 1383-1386
  • Avnir, D., Is the Geometry of Nature Fractal? (1998) Science, 279 (5347), pp. 39-40
  • Hills, B.P., Cano, C., Belton, P.S., Proton NMR relaxation studies of aqueous polysaccharide systems (1991) Macromolecules, 24 (10), pp. 2944-2950
  • Kimberlee, P., Adrian, C.T., Laurence, H., Mapping of the spatial variation in alginate concentration in calcium alginate gels by magnetic resonance imaging(MRI) (1993) Carbohydr. Res., 246 (1), pp. 43-49
  • Simpson, N.E., NMR properties of alginate microbeads (2003) Biomaterials, 24 (27), pp. 4941-4948
  • Thom, D., Characterisation of cation binding and gelation of polyuronates by circular dichroism (1982) Carbohydr. Res., 100 (1), pp. 29-42
  • Yang, C.H., Strengthening Alginate/Polyacrylamide Hydrogels Using Various Multivalent Cations (2013) ACS Appl. Mater. Interfaces, 5 (21), pp. 10418-10422

Citas:

---------- APA ----------
Sonego, J.M., Santagapita, P.R., Perullini, M. & Jobbágy, M. (2016) . Ca(II) and Ce(III) homogeneous alginate hydrogels from the parent alginic acid precursor: A structural study. Dalton Transactions, 45(24), 10050-10057.
http://dx.doi.org/10.1039/c6dt00321d
---------- CHICAGO ----------
Sonego, J.M., Santagapita, P.R., Perullini, M., Jobbágy, M. "Ca(II) and Ce(III) homogeneous alginate hydrogels from the parent alginic acid precursor: A structural study" . Dalton Transactions 45, no. 24 (2016) : 10050-10057.
http://dx.doi.org/10.1039/c6dt00321d
---------- MLA ----------
Sonego, J.M., Santagapita, P.R., Perullini, M., Jobbágy, M. "Ca(II) and Ce(III) homogeneous alginate hydrogels from the parent alginic acid precursor: A structural study" . Dalton Transactions, vol. 45, no. 24, 2016, pp. 10050-10057.
http://dx.doi.org/10.1039/c6dt00321d
---------- VANCOUVER ----------
Sonego, J.M., Santagapita, P.R., Perullini, M., Jobbágy, M. Ca(II) and Ce(III) homogeneous alginate hydrogels from the parent alginic acid precursor: A structural study. Dalton Trans. 2016;45(24):10050-10057.
http://dx.doi.org/10.1039/c6dt00321d