Artículo

Gonzalez, M.M.; Rasse-Suriani, F.A.O.; Franca, C.A.; Diez, R.P.; Gholipour, Y.; Nonami, H.; Erra-Balsells, R.; Cabrerizo, F.M. "Photosensitized electron transfer within a self-assembled norharmane-2′-deoxyadenosine 5′-monophosphate (dAMP) complex" (2012) Organic and Biomolecular Chemistry. 10(47):9359-9372
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Norharmane is a compound that belongs to a family of alkaloids called β-carbolines (βCs). These alkaloids are present in a wide range of biological systems, playing a variety of significant photo-dependent roles. Upon UV-A irradiation, βCs are able to act as efficient photosensitizers. In this work, we have investigated the photosensitized oxidation of 2′-deoxyadenosine 5′-monophosphate (dAMP) by norharmane in an aqueous phase, upon UV-A (350 nm) irradiation. The effect of the pH was evaluated on both the interactions between norharmane and dAMP in the ground and electronic excited states, and on the dAMP photosensitized oxidation. A quite strong static interaction between norharmane and dAMP was observed, especially under those pH conditions where the protonated form of the alkaloid is present (pH < 7). Theoretical studies were performed to further characterize the static complex structure. The participation of reactive oxygen species (ROS) in the photosensitized reaction was also investigated and the photoproducts were characterized by means of UV-LDI-MS and ESI-MS. All the data provided herein indicate that electron transfer (Type I) within a self-assembled norharmane-dAMP complex is the operative mechanism in the dAMP photosensitization. © 2012 The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Photosensitized electron transfer within a self-assembled norharmane-2′-deoxyadenosine 5′-monophosphate (dAMP) complex
Autor:Gonzalez, M.M.; Rasse-Suriani, F.A.O.; Franca, C.A.; Diez, R.P.; Gholipour, Y.; Nonami, H.; Erra-Balsells, R.; Cabrerizo, F.M.
Filiación:CIHIDECAR - CONICET, Departamento de Química Orgánica, Universidad de Buenos Aires, Pabellón 2 3p, (1428) Buenos Aires, Argentina
Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús (IIB-INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Intendente Marino Km 8.2, CC 164 (7130) Chascomús, Argentina
CEQUINOR - CONICET, Facultad de Ciencias Exactas, Universidad Nacional, Plata calle 47 y 115, (1900) La Plata, Argentina
Plant Biophysics/Biochemistry Research Laboratory, College of Agriculture, Ehime University, 3-5-7 Tarumi, (790-8566) Matsuyama, Japan
Palabras clave:Aqueous phase; Carbolines; Complex structure; Deoxyadenosine; Electron transfer; Electronic excited state; Monophosphates; pH condition; Photoproducts; Photosensitized oxidation; Protonated; Reactive oxygen species; Self-assembled; Static interaction; Theoretical study; UV-LDI-MS; Cesium; Electric excitation; Electron transitions; Irradiation; Nitrogen compounds; Photosensitizers; Metabolites; 2' deoxy 5' adenosine monophosphate; 2'-deoxy-5'-adenosine monophosphate; beta carboline; deoxyadenosine phosphate; drug derivative; harmine; article; chemical structure; chemistry; electrospray mass spectrometry; light; oxidation reduction reaction; pH; Deoxyadenine Nucleotides; Harmine; Hydrogen-Ion Concentration; Light; Molecular Structure; Oxidation-Reduction; Spectrometry, Mass, Electrospray Ionization
Año:2012
Volumen:10
Número:47
Página de inicio:9359
Página de fin:9372
DOI: http://dx.doi.org/10.1039/c2ob26462e
Título revista:Organic and Biomolecular Chemistry
Título revista abreviado:Org. Biomol. Chem.
ISSN:14770520
CODEN:OBCRA
CAS:beta carboline, 244-63-3; deoxyadenosine phosphate, 653-63-4; harmine, 343-27-1, 442-51-3; 2'-deoxy-5'-adenosine monophosphate, 653-63-4; Deoxyadenine Nucleotides; Harmine, 442-51-3; norharman, 244-63-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14770520_v10_n47_p9359_Gonzalez

Referencias:

  • Hemmateenejad, B., Abbaspour, A., Maghami, H., Miri, R., Panjehshahin, M.R., (2006) Anal. Chim. Acta, 575, pp. 290-299
  • Bais, H.P., Park, S.-W., Stermitz, F.R., Halligan, K.M., Vivanco, J.M., (2002) Phytochemistry, 61, pp. 539-543
  • Kam, T.-S., Sim, K.-M., Koyano, T., Komiyama, K., (1999) Phytochemistry, 50, pp. 75-79
  • Kearns, P.S., Cou, J.C., Rideout, J.A., (1995) J. Nat. Prod., 58, pp. 1075-1076
  • De Meester, C., (1995) Mutat. Res., Rev.Genet. Toxicol., 339, pp. 139-153
  • Pfau, W., Skog, K., (2004) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci., 802, pp. 115-126
  • Spijkerman, R., Van Den Eijnden, R., Van De Mheen, D., Bongers, I., Fekkes, D., (2002) Eur. Neuropsychopharmacol., 12, pp. 61-71
  • Cox, E.D., Cook, J.M., (1995) Chem. Rev., 95, pp. 1797-1842
  • Pari, K., Sundari, C.S., Chandani, S., Balasubramanian, D., (2000) J. Biol. Chem., 275, pp. 2455-2462
  • Torreilles, J., Guerin, M., Previero, A., (1985) Biochimie, 67, p. 929
  • Breyer-Pfaff, U., Wiatr, G., Stevens, I., Gaertner, H., Mundle, G., Mann, K., (1996) Life Sci., 58, pp. 1425-1432
  • Mori, T., Nakagawa, A., Kobayashi, N., Hashimoto, M.W., Wakabayashi, K., Shimoi, K., Kinae, N., (1998) J. Radiat. Res., 39, p. 21
  • Chang, C., Castellazzi, M., Glover, T., Trosko, J., (1978) Cancer Res., 38, p. 4527
  • Shimoi, K., Kawabata, H., Tomita, I., (1992) Mutat. Res., Fundam. Mol. Mech. Mutagen., 268, p. 287
  • Larson, R.A., Marley, K.A., Tuveson, R.W., Berenbaum, M.R., (1988) Photochem. Photobiol., 48, pp. 665-674
  • Hudson, J.B., Graham, E.A., Towers, G.H.N., (1986) Photochem. Photobiol., 43, p. 21
  • Downum, K.R., (1992) New Phytol., 122, pp. 401-420
  • Gonzalez, M.M., Salum, M.L., Gholipour, Y., Cabrerizo, F.M., Erra-Balsells, R., (2009) Photochem. Photobiol. Sci., 8, pp. 1139-1149
  • Gonzalez, M.M., Arnbjerg, J., Denofrio, M.P., Erra-Balsells, R., Ogilby, P.R., Cabrerizo, F.M., (2009) J. Phys. Chem. A, 113, pp. 6648-6656
  • Cabrerizo, F.M., Arnbjerg, J., Denofrio, M.P., Erra-Balsells, R., Ogilby, P.R., (2010) ChemPhysChem, 11, pp. 796-798
  • García-Zubiri, I.X., Burrows, H.D., Seixas De Melo, J.S., Pina, J., Monteserín, M., Tapia, M.J., (2007) Photochem. Photobiol., 83, pp. 1455-1464
  • Guan, H., Liu, X., Peng, W., Cao, R., Ma, Y., Chen, H., Xu, A., (2006) Biochem. Biophys. Res. Commun., 342, pp. 894-901
  • Gonzalez, M.M., Pellon-Maison, M., Ales-Gandolfo, M.A., Gonzalez-Baró, M.R., Erra-Balsells, R., Cabrerizo, F.M., (2010) Org. Biomol. Chem., 8, pp. 2543-2552
  • Gonzalez, M.M., Vignoni, M., Pellon-Maison, M., Ales-Gandolfo, M.A., Gonzalez-Baró, M.R., Erra-Balsells, R., Epe, B., Cabrerizo, F.M., (2012) Org. Biomol. Chem., 10, pp. 1807-1819. , All full aromatic βCs possess a norharmane-like skeleton moiety, and the difference between them is the nature and position of the substituents. Therefore, the use of norharmane as a model of βC is a reasonable starting point
  • Lakowicz, J.R., (2006) Principles of Fluorescence Spectroscopy, , Springer, New York, 278-285
  • Petroselli, G., Dántola, M.L., Cabrerizo, F.M., Lorente, C., Braun, A.M., Oliveros, E., Thomas, A.H., (2009) J. Phys. Chem. A, 113, pp. 1794-1799
  • Davies, D.B., Veselkov, D.A., Djimant, L.N., Veselkov, A.N., (2001) Eur. Biophys. J., 30, pp. 354-366
  • Heyn, M.P., Nicola, C.U., Schwarz, G., (1977) J. Phys. Chem., 81, pp. 1611-1617
  • D'Amelio, N., Fontanive, L., Uggeri, F., Suggi-Liverani, F., Navarini, L., (2009) Food Biophys., 4, pp. 321-330
  • Ruso, J.M., Attwood, D., Taboada, P., Mosquera, V., Sarmiento, F., (2000) Langmuir, 16, pp. 1620-1625
  • Ruso, J.M., Taboada, P., Attwood, D., Mosquera, V., Sarmiento, F., (2000) Phys. Chem. Chem. Phys., 2, pp. 1261-1265
  • Reuben, J., (1973) J. Am. Chem. Soc., 95, pp. 3534-3540
  • Gaggelli, E., D'Amelio, N., Gaggelli, N., Valensin, G., (2000) Eur. J. Inorg. Chem., pp. 1699-1706
  • Vainio, M.J., Johnson, M.S., (2007) J. Chem. Inf. Model., 47, pp. 2462-2474
  • Stewart, J.J.P., (2008) Stewart Computational Chemistry, , http://OpenMOPAC.net, MOPAC2009, Colorado Springs, CO, USA
  • Petroselli, G., Erra-Balsells, R., Cabrerizo, F.M., Lorente, C., Capparelli, A.L., Braun, A.M., Oliveros, E., Thomas, A.H., (2007) Org. Biomol. Chem., 5, pp. 2792-2799
  • Denofrio, M.P., Thomas, A.H., Lorente, C., (2010) J. Phys. Chem. A, 114, pp. 10944-10950
  • Thomas, A.H., Cabrerizo, R., Vignoni, M., Erra-Balsells, R., Cabrerizo, F.M., Capparelli, A.L., (2006) Helv. Chim. Acta, 89, pp. 1090-1104
  • Nonami, H., Tanaka, K., Fukuyama, Y., Erra-Balsells, R., (1998) Rapid Commun. Mass Spectrom., 12, pp. 285-296
  • García-Zubiri, I.X., Burrows, H.D., Seixas De Melo, J.S., Monteserín, M., Arroyo, A., Tapia, M.J., (2008) J. Fluoresc., 18, pp. 961-972
  • Miskolczy, Z., Megyesi, M., Biczók, L., Görner, H., (2011) Photochem. Photobiol. Sci., 10, pp. 592-600
  • Tribolet, R., Sigel, H., (1987) Biophys. Chem., 27, pp. 119-130. , Given the self-association equilibrium constants (Ksa) estimated in this work, under both pH conditions, at 1 mM of reactant concentration both (norharmane and dAMP) are in their monomeric forms (&gt;99.5%)
  • Ghiggino, K.P., Skilton, P.F., Thistlethwaite, P.J., (1985) J. Photochem., 31, pp. 113-121. , Moreover, τF 0 value obtained here is in disagreement with τF 0 value previously reported by Ghiggino et al. 45 Our findings suggest that the quenching of norharmane fluorescence by the OH- ion described by the authors would be noticeable at pH &gt; 10.5
  • Řezáč, J., Fanfrlík, J., Salahub, D., Hobza, P., (2009) J. Chem. Theory Comput., 5, pp. 1749-1760
  • Sigel, H., Griesser, R., (2005) Chem. Soc. Rev., 34, pp. 875-900
  • Sengupta, T., Choudhury, S.D., Basu, S., (2004) J. Am. Chem. Soc., 126, pp. 10589-10593
  • Petroselli, G., Dántola, M.L., Cabrerizo, F.M., Capparelli, A.L., Lorente, C., Oliveros, E., Thomas, A.H., (2008) J. Am. Chem. Soc., 130, pp. 3001-3011
  • Wilkinson, F., Helman, H.P., Ross, A.B., (1995) J. Phys. Chem. Ref. Data, 24, pp. 663-677
  • Douki, T., Cadet, J., (1999) Int. J. Radiat. Biol., 75, pp. 571-581
  • Nonami, H., Fukui, S., Erra-Balsells, R., (1997) J. Mass Spectrom., 32, pp. 287-296
  • Frelon, S., Douki, T., Ravanat, J.-L., Pouget, J.-P., Tornabene, C., Cadet, J., (2000) Chem. Res. Toxicol., 13, pp. 1002-1010
  • Angelov, D., Spassky, A., Berger, M., Cadet, J., (1997) J. Am. Chem. Soc., 119, pp. 11373-11380

Citas:

---------- APA ----------
Gonzalez, M.M., Rasse-Suriani, F.A.O., Franca, C.A., Diez, R.P., Gholipour, Y., Nonami, H., Erra-Balsells, R.,..., Cabrerizo, F.M. (2012) . Photosensitized electron transfer within a self-assembled norharmane-2′-deoxyadenosine 5′-monophosphate (dAMP) complex. Organic and Biomolecular Chemistry, 10(47), 9359-9372.
http://dx.doi.org/10.1039/c2ob26462e
---------- CHICAGO ----------
Gonzalez, M.M., Rasse-Suriani, F.A.O., Franca, C.A., Diez, R.P., Gholipour, Y., Nonami, H., et al. "Photosensitized electron transfer within a self-assembled norharmane-2′-deoxyadenosine 5′-monophosphate (dAMP) complex" . Organic and Biomolecular Chemistry 10, no. 47 (2012) : 9359-9372.
http://dx.doi.org/10.1039/c2ob26462e
---------- MLA ----------
Gonzalez, M.M., Rasse-Suriani, F.A.O., Franca, C.A., Diez, R.P., Gholipour, Y., Nonami, H., et al. "Photosensitized electron transfer within a self-assembled norharmane-2′-deoxyadenosine 5′-monophosphate (dAMP) complex" . Organic and Biomolecular Chemistry, vol. 10, no. 47, 2012, pp. 9359-9372.
http://dx.doi.org/10.1039/c2ob26462e
---------- VANCOUVER ----------
Gonzalez, M.M., Rasse-Suriani, F.A.O., Franca, C.A., Diez, R.P., Gholipour, Y., Nonami, H., et al. Photosensitized electron transfer within a self-assembled norharmane-2′-deoxyadenosine 5′-monophosphate (dAMP) complex. Org. Biomol. Chem. 2012;10(47):9359-9372.
http://dx.doi.org/10.1039/c2ob26462e