Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background: Dengue cases have increased during the last decades, particularly in non-endemic areas, and Argentina was no exception in the southern transmission fringe. Although temperature rise has been blamed for this, human population growth, increased travel and inefficient vector control may also be implicated. The relative contribution of geographic, demographic and climatic of variables on the occurrence of dengue cases was evaluated.Methods: According to dengue history in the country, the study was divided in two decades, a first decade corresponding to the reemergence of the disease and the second including several epidemics. Annual dengue risk was modeled by a temperature-based mechanistic model as annual days of possible transmission. The spatial distribution of dengue occurrence was modeled as a function of the output of the mechanistic model, climatic, geographic and demographic variables for both decades.Results: According to the temperature-based model dengue risk increased between the two decades, and epidemics of the last decade coincided with high annual risk. Dengue spatial occurrence was best modeled by a combination of climatic, demographic and geographic variables and province as a grouping factor. It was positively associated with days of possible transmission, human population number, population fall and distance to water bodies. When considered separately, the classification performance of demographic variables was higher than that of climatic and geographic variables.Conclusions: Temperature, though useful to estimate annual transmission risk, does not fully describe the distribution of dengue occurrence at the country scale. Indeed, when taken separately, climatic variables performed worse than geographic or demographic variables. A combination of the three types was best for this task. © 2012 Carbajo et al.; licensee BioMed Central Ltd.

Registro:

Documento: Artículo
Título:Is temperature the main cause of dengue rise in non-endemic countries? The case of Argentina
Autor:Carbajo, A.E.; Cardo, M.V.; Vezzani, D.
Filiación:Unidad de Ecología de Reservorios y Vectores de Parásitos, DEGE, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 4 piso (C1428EHA), Buenos Aires, Argentina
Ecología de Enfermedades Transmitidas por Vectores (EETV), Instituto de Investigaciones e Ingeniería Ambiental (3iA), Universidad Nacional de General San Martín, Peatonal Belgrano 3563 (1650), San Martín, Prov. de Buenos Aires, Argentina
Palabras clave:climate effect; dengue fever; disease transmission; epidemic; health risk; population growth; spatial distribution; temperature effect; Argentina; Argentina; article; dengue; disease transmission; health survey; heat; human; medical geography; population growth; statistical model; theoretical model; Argentina; Dengue; Geography, Medical; Hot Temperature; Humans; Models, Statistical; Models, Theoretical; Population Growth; Population Surveillance
Año:2012
Volumen:11
DOI: http://dx.doi.org/10.1186/1476-072X-11-26
Título revista:International Journal of Health Geographics
Título revista abreviado:Int. J. Health Geogr.
ISSN:1476072X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1476072X_v11_n_p_Carbajo

Referencias:

  • Dengue and severe dengue http://www.who.int/mediacentre/factsheets/fs117/en/index.html, Media Center; Mackenzie, J., Gubler, D., Petersen, L., Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses (2004) Nat Med, 10, pp. 98-109. , 10.1038/nm970, 14702639
  • Tatem, A., Rogers, D., Hay, S., Global transport networks and infectious disease spread (2006) Adv Parasitol, 62, pp. 293-343. , 3145127, 16647974
  • Wilder-Smith, A., Gubler, D., Geographic expansion of dengue: the impact of international travel (2008) Med Clin N Am, 92, pp. 1377-1390. , 10.1016/j.mcna.2008.07.002, 19061757
  • Favier, C., Degallier, N., Dubois, M.A., Dengue epidemic modeling: stakes and pitfalls (2005) APBN, 9, pp. 1190-1194
  • Jetten, T.H., Focks, D.A., Potential changes in the distribution of dengue transmission under climate warming (1997) AmJTrop Med Hyg, 57, pp. 285-297
  • Patz, J., Martens, W., Focks, D., Jetten, T., Dengue fever epidemic potential as projected by general circulation models of global climate change (1998) Environ Health Perspect, 106, pp. 147-153. , 10.1289/ehp.98106147, 1533051, 9452414
  • Hales, S., de Wet, N., Maindonald, J., Woodward, A., Potential effect of population and climate changes on global distribution of dengue fever: an empirical model (2002) Lancet, 360, pp. 830-834. , 10.1016/S0140-6736(02)09964-6, 12243917
  • Rogers, D.J., Wilson, A.J., Hay, S.I., Graham, A.J., The global distribution of yellow fever and dengue (2006) Adv Parasitol, 62, pp. 181-220. , 3164798, 16647971
  • Wu, P.C., Lay, J.G., Guo, H.R., Lin, C.Y., Lung, S.C., Su, H.J., Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan (2009) Sci Total Environ, 407, pp. 2224-2233. , 10.1016/j.scitotenv.2008.11.034, 19157509
  • Ostfeld, R.S., Glass, G.E., Keesing, F., Spatial epidemiology: an emerging (or re-emerging) discipline (2005) Trends Ecol Evol, 20, pp. 328-336. , 10.1016/j.tree.2005.03.009, 16701389
  • Martens, W., Jetten, T., Focks, D., Sensitivity of malaria, schistosomiasis and dengue to global warming (1997) Clim Chang, 35, pp. 145-156
  • Van Kleef, E., Bambrick, H., Hales, S., The geographic distribution of dengue fever and the potential influence of global climate change (2010) TropIKAnet, 2010, pp. 0-0. , ahead of print Epub Mar 21, 2010
  • Reiter, P., Climate change and mosquito-borne disease (2001) Environ Health Perspect, 109, pp. 141-161. , 1240549, 11250812
  • Farrar, J., Focks, D., Gubler, D., Barrera, R., Guzman, M.G., Simmons, C., Kalayanarooj, S., Lloyd, L., Towards a global dengue research agenda (2007) Trop Med Int Health, 12, pp. 695-699. , 10.1111/j.1365-3156.2007.01838.x, 17550466
  • Vezzani, D., Carbajo, A.E., Aedes aegypti, Aedes albopictus, and dengue in Argentina: current knowledge and future directions (2008) Mem Inst Oswaldo Cruz, 103, pp. 66-74. , 10.1590/S0074-02762008005000003, 18327504
  • (2009) Boletín Epidemiológico Periódico. Situación del dengue en Argentina, , Buenos Aires: Primer semestre del 2009, Ministerio de Salud de la Nación
  • Seijo, A., Dengue 2009: cronología de una epidemia (2009) Arch Argent Pediatr, 107, pp. 387-391
  • Carbajo, A.E., Schweigmann, N., Curto, S.I., de Garin, A., Bejaran, R., Dengue transmission risk maps of Argentina (2001) Trop Med Int Health, 6, pp. 170-183. , 10.1046/j.1365-3156.2001.00693.x, 11299033
  • Russell, R.C., Currie, B.J., Lindsay, M.D., Mackenzie, J.S., Ritchie, S.A., Whelan, P.I., Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past (2009) Med J Aust, 190, pp. 265-268
  • Brunkard, J.M., López, J.L.R., Ramirez, J., Cifuentes, E., Rothenberg, S.J., Hunsperger, E.A., Moore, C.G., Haddad, B.M., Dengue fever seroprevalence and risk factors, Texas-Mexico Border, 2004 (2007) Emerg Infect Dis, 13, pp. 1477-1483. , 10.3201/eid1310.061586, 2851499, 18257990
  • Gubler, D., The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? (2004) Comp Immunol Microbiol Infect Dis, 27, pp. 319-330. , 10.1016/j.cimid.2004.03.013, 15225982
  • Eiman, M., Introini, V., Ripoll, C., (2010) Directrices para la prevención y control de Aedes aegypti. Dirección de Enfermedades Transmitidas por Vectores, , Buenos Aires: Ministerio de Salud de la Nación
  • Taylor, J.E., The relationship between international migration, trade, and development: some paradoxes and findings (2006) Proc, 2006, pp. 199-212
  • Bennett, S.N., Holmes, E.C., Chirivella, M., Rodriguez, D.M., Beltran, M., Vorndam, V., Gubler, D.J., McMillan, W.O., Selection-driven evolution of emergent dengue virus (2003) Mol Biol Evol, 20, pp. 1650-1658. , 10.1093/molbev/msg182, 12832629
  • Barbazan, P., Yoksan, S., Gonzalez, J.P., Dengue hemorrhagic fever epidemiology in Thailand: description and forecasting of epidemics (2002) Microbes Infect, 4, pp. 699-705. , 10.1016/S1286-4579(02)01589-7, 12067829
  • Derouich, M., Boutayeb, A., Twizell, E., A model of dengue fever (2003) Biomed Eng Online, 2, p. 4. , 10.1186/1475-925X-2-4, 153427, 12657162
  • Halide, H., Ridd, P., A predictive model for dengue hemorrhagic fever epidemics (2008) Int J Environ Health Res, 18, pp. 253-265. , 10.1080/09603120801966043, 18668414
  • Wu, P.C., Guo, H.R., Lung, S.C., Lin, C.Y., Su, H.J., Weather as an effective predictor for occurrence of dengue fever in Taiwan (2007) Acta Trop, 103, pp. 50-57. , 10.1016/j.actatropica.2007.05.014, 17612499
  • (2012), http://new.paho.org/hq/index.php?option=com_content&task=view&id=264&Itemid=363&lang=es, Información Regional Dengue: Número de Casos; (2010) Censo Nacional de Población, Hogares y Viviendas 2010, , http://www.censo2010.indec.gov.ar/
  • (2001) Censo Nacional de Población, Hogares y Viviendas 2001, , http://www.indec.gov.ar/webcenso/index.asp
  • McLean, D., Clarke, A., Coleman, J., Montalbetti, C., Skidmore, A., Walters, T., Wise, R., Vector capability of Aedes aegypti mosquitoes for California encephalitis and dengue viruses at various temperatures (1974) Can J Microbiol, 20, pp. 255-262. , 10.1139/m74-040, 4132612
  • Watts, D., Burke, D., Harrison, B., Whitmire, R., Nisalak, A., Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus (1987) AmJTrop Med Hyg, 36, pp. 143-152
  • Focks, D.A., Haile, D.G., Daniels, E., Mount, G.A., Dynamic life table model for Ae aegypti (Diptera:Culicidae): analysis of the literature and model development (1993) J Med Entomol, 30, pp. 1003-1017
  • Sharpe, P.J.H., DeMichele, D.W., Reaction kinetics of poikilotherm development (1977) J Theor Biol, 64, pp. 649-670. , 10.1016/0022-5193(77)90265-X, 846210
  • Focks, D.A., Haile, D.G., Daniels, E., Mount, G.A., Dynamic life table model for Ae aegypti (Diptera:Culicidae): simulation results and validation (1993) J Med Entomol, 30 (6), pp. 1018-1028
  • Focks, D., Alexander, N., Villegas, E., Romero-Vivas, C., Midega, J., Bisset, J., (2006) Multicountry study of Aedes aegypti pupal productivity survey methodology: findings and recommendations, , Geneva: TDR/IRM
  • Lambrechts, L., Paaijmans, K., Fansiri, T., Carrington, L., Kramer, L., Thomas, M., Scott, T., Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti (2011) Proc Natl Acad Sci U S A, 108, pp. 7460-7465. , 10.1073/pnas.1101377108, 3088608, 21502510
  • NNDC Climate Data Online, , http://www.nesdis.noaa.gov
  • Bailey, T.C., Gatrell, A.C., (1998) Interactive spatial data analysis, , Harlow: Longman
  • (2000) Arcview, , Redlands, 32, Environmental Systems Research Institute
  • Paterson, S., Lello, J., Mixed models: getting the best use of parasitological data (2003) Trends Parasitol, 19, pp. 370-375. , 10.1016/S1471-4922(03)00149-1, 12901939
  • McCullagh, P., Nelder, J.A., (1989) Generalized linear models, , London: Chapman & Hall
  • (2010) Sistema de Información Geográfica Nacional, , Buenos Aires, Instituto Geográfico Nacional
  • (2005) Shuttle Radar Topography Mission, Digital Terrain Elevation Data, , United States Geological Survey
  • Davis, C., Hyde, J., Bangdiwala, S., Nelson, J., An example of dependencies among variables in a conditional logistic regression (1986) Modern Statistical Methods in Chronic Disease Epidemiology, pp. 140-147. , New York: Wiley, Moolgavkar SH, Prentice RL
  • Zuur, A., Ieno, E., Elphick, C., A protocol for data exploration to avoid common statistical problems (2009) Methods Ecol Evol, 1, pp. 3-14
  • Akaike, H., A new look at the statistical model identification (1974) IEEE Trans Autom Control, 19, pp. 716-723
  • Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., (2009) Mixed effects models and extensions in ecology with R, , New York: Sringer
  • Fielding, A.H., Bell, J.F., A review of methods for the assessment of prediction errors in conservation presence/absence models (1997) Environ Conserv, 24, pp. 38-49
  • Landis, J., Koch, G., The measurement of observer agreement for categorical data (1977) Biometrics, 33, pp. 159-174. , 10.2307/2529310, 843571
  • Titus, K., Mosher, J.A., Chance corrected classification for use in discriminant analysis: ecological applications (1984) Am Midl Nat, 111, pp. 1-7
  • (2011) R: a language and environment for statistical computing, , Vienna: RFfS Computing, R Development Core Team

Citas:

---------- APA ----------
Carbajo, A.E., Cardo, M.V. & Vezzani, D. (2012) . Is temperature the main cause of dengue rise in non-endemic countries? The case of Argentina. International Journal of Health Geographics, 11.
http://dx.doi.org/10.1186/1476-072X-11-26
---------- CHICAGO ----------
Carbajo, A.E., Cardo, M.V., Vezzani, D. "Is temperature the main cause of dengue rise in non-endemic countries? The case of Argentina" . International Journal of Health Geographics 11 (2012).
http://dx.doi.org/10.1186/1476-072X-11-26
---------- MLA ----------
Carbajo, A.E., Cardo, M.V., Vezzani, D. "Is temperature the main cause of dengue rise in non-endemic countries? The case of Argentina" . International Journal of Health Geographics, vol. 11, 2012.
http://dx.doi.org/10.1186/1476-072X-11-26
---------- VANCOUVER ----------
Carbajo, A.E., Cardo, M.V., Vezzani, D. Is temperature the main cause of dengue rise in non-endemic countries? The case of Argentina. Int. J. Health Geogr. 2012;11.
http://dx.doi.org/10.1186/1476-072X-11-26