Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the secular effects that an oscillating background ultralight (fuzzy) cosmological vector field has on the dynamics of binary systems; such effects appear when the field and the binary are in resonance. We first consider the gravitational interaction between the field and the systems, and quantify the main differences with an oscillating background scalar field. If the energy density of such a field is sufficiently large, as required if it is supposed to be all of the dark matter, we show that the secular effects could yield potentially observable signatures in high precision time of arrival measurements of binary pulsars. We then analyse the secular effects that arise when the field is directly coupled to the bodies in the binary. We show that this study is particularly relevant for models where fuzzy dark matter mediates a baryonic force B (or B-L, with L the lepton number), due to the stellar amount of nucleons present in the stars. The constraints we obtain from current data are already competitive with (or even more constraining than) laboratory tests of the equivalence principle. © 2018 IOP Publishing Ltd and Sissa Medialab.

Registro:

Documento: Artículo
Título:Vector fuzzy dark matter, fifth forces, and binary pulsars
Autor:Nacir, D.L.; Urban, F.R.
Filiación:Departamento de Física and IFIBA, FCEyN UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon i, Buenos Aires, 1428, Argentina
CEICO, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Praha 8, 182 21, Czech Republic
Palabras clave:dark matter theory; millisecond pulsars; particle physics - cosmology connection
Año:2018
Volumen:2018
Número:10
DOI: http://dx.doi.org/10.1088/1475-7516/2018/10/044
Título revista:Journal of Cosmology and Astroparticle Physics
Título revista abreviado:J. Cosmol. Astroparticle Phys.
ISSN:14757516
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14757516_v2018_n10_p_Nacir

Referencias:

  • Aghanim, N., Planck 2018 Results. VI. Cosmological Parameters, , [1807.06209]
  • Bertone, G., Hooper, D., Silk, J., Particle dark matter: Evidence, candidates and constraints (2005) Phys. Rept., 405, p. 279. , https://doi.org/10.1016/j.physrep.2004.08.031[hep-ph/0404175]
  • Deffayet, C., Esposito-Farese, G., Woodard, R.P., Nonlocal metric formulations of MOND with sufficient lensing (2011) Phys. Rev., 84, p. 124054. , https://doi.org/10.1103/PhysRevD.84.124054[1106.4984]
  • Deffayet, C., Esposito-Farese, G., Woodard, R.P., Field equations and cosmology for a class of nonlocal metric models of MOND (2014) Phys. Rev., 90, p. 064038. , https://doi.org/10.1103/PhysRevD.90.089901[1405.0393]
  • Berezhiani, L., Khoury, J., Theory of dark matter superfluidity (2015) Phys. Rev., 92, p. 103510. , https://doi.org/10.1103/PhysRevD.92.103510[1507.01019]
  • Berezhiani, L., Famaey, B., Khoury, J., Phenomenological consequences of superfluid dark matter with baryon-phonon coupling (2018) J. Cosmol. Astropart. Phys., 2018 (9), p. 021. , 2018 [1711.05748]
  • Akerib, D.S., Results from a search for dark matter in the complete LUX exposure (2017) Phys. Rev. Lett., 118, p. 021303. , https://doi.org/10.1103/PhysRevLett.118.021303[1608.07648]
  • Cui, X., Dark matter results from 54-ton-day exposure of PandaX-II experiment (2017) Phys. Rev. Lett., 119, p. 181302. , https://doi.org/10.1103/PhysRevLett.119.181302[1708.06917]
  • Aprile, E., Dark matter search results from a one tonne × year exposure of XENON1T (2018) Phys. Rev. Lett., 121, p. 111302. , https://doi.org/10.1103/PhysRevLett.121.111302[1805.12562]
  • Preskill, J., Wise, M.B., Wilczek, F., Cosmology of the invisible axion (1983) Phys. Lett., 120 (1-3), p. 127
  • Abbott, L.F., Sikivie, P., A cosmological bound on the invisible axion (1983) Phys. Lett., 120 (1-3), p. 133
  • Dine, M., Fischler, W., The not so harmless axion (1983) Phys. Lett., 120 (1-3), p. 137
  • Turner, M.S., Coherent scalar field oscillations in an expanding universe (1983) Phys. Rev., 28 (6), p. 1243
  • Hu, W., Barkana, R., Gruzinov, A., Cold and fuzzy dark matter (2000) Phys. Rev. Lett., 85, p. 1158. , https://doi.org/10.1103/PhysRevLett.85.1158[astro-ph/0003365]
  • Nelson, A.E., Scholtz, J., Dark light, dark matter and the misalignment mechanism (2011) Phys. Rev., 84, p. 103501. , https://doi.org/10.1103/PhysRevD.84.103501[1105.2812]
  • Marzola, L., Raidal, M., Urban, F.R., Oscillating spin-2 dark matter (2018) Phys. Rev., 97, p. 024010. , https://doi.org/10.1103/PhysRevD.97.024010[1708.04253]
  • Marsh, D.J.E., Axion cosmology (2016) Phys. Rept., 643, p. 1. , https://doi.org/10.1016/j.physrep.2016.06.005[1510.07633]
  • Cembranos, J.A.R., Hallabrin, C., Maroto, A.L., Jareno, S.J.N., Isotropy theorem for cosmological vector fields (2012) Phys. Rev., 86, p. 021301. , https://doi.org/10.1103/PhysRevD.86.021301[1203.6221]
  • Cembranos, J.A.R., Maroto, A.L., Núñez Jareño, S.J., Isotropy theorem for cosmological Yang-Mills theories (2013) Phys. Rev., 87, p. 043523. , https://doi.org/10.1103/PhysRevD.87.043523[1212.3201]
  • Cembranos, J.A.R., Maroto, A.L., Núñez Jareño, S.J., Isotropy theorem for arbitrary-spin cosmological fields (2014) J. Cosmol. Astropart. Phys., 2014 (3), p. 042. , 2014 [1311.1402]
  • Arias, P., WISPy cold dark matter (2012) J. Cosmol. Astropart. Phys., 2012 (6), p. 013. , 2012 [1201.5902]
  • Graham, P.W., Mardon, J., Rajendran, S., Vector dark matter from inflationary fluctuations (2016) Phys. Rev., 93, p. 103520. , https://doi.org/10.1103/PhysRevD.93.103520[1504.02102]
  • Knapen, S., Lin, T., Zurek, K.M., Light dark matter: Models and constraints (2017) Phys. Rev., 96, p. 115021. , https://doi.org/10.1103/PhysRevD.96.115021[1709.07882]
  • Irsic, V., Viel, M., Haehnelt, M.G., Bolton, J.S., Becker, G.D., First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations (2017) Phys. Rev. Lett., 119, p. 031302. , https://doi.org/10.1103/PhysRevLett.119.031302[1703.04683]
  • Armengaud, E., Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest (2017) Mon. Not. Roy. Astron. Soc., 471, p. 4606. , https://doi.org/10.1093/mnras/stx1870[1703.09126]
  • Zhang, J., The importance of quantum pressure of fuzzy dark matter on Lyman-α forest (2018) Astrophys. J., 863 (1), p. 73. , https://doi.org/10.3847/1538-4357/aacf3f[1708.04389]
  • Bullock, J.S., Boylan-Kolchin, M., Small-scale challenges to the ΛcDM paradigm (2017) Ann. Rev. Astron. Astrophys., 55, p. 343. , https://doi.org/10.1146/annurev-astro-091916-055313[1707.04256]
  • Bar, N., Blas, D., Blum, K., Sibiryakov, S., Galactic Rotation Curves Vs. Ultra-light Dark Matter: Implications of the Soliton - Host Halo Relation, , [1805.00122]
  • Robles, V.H., Bullock, J.S., Boylan-Kolchin, M., Scalar Field Dark Matter: Helping or Hurting Small-scale Problems in Cosmology?, , [1807.06018]
  • Baryakhtar, M., Lasenby, R., Teo, M., Black hole superradiance signatures of ultralight vectors (2017) Phys. Rev., 96, p. 035019. , https://doi.org/10.1103/PhysRevD.96.035019[1704.05081]
  • De Martino, I., Recognizing axionic dark matter by Compton and de Broglie scale modulation of pulsar timing (2017) Phys. Rev. Lett., 119, p. 221103. , https://doi.org/10.1103/PhysRevLett.119.221103[1705.04367]
  • Baumann, D., Chia, H.S., Porto, R.A., Probing Ultralight Bosons with Binary Black Holes, , [1804.03208]
  • Blas, D., Nacir, D.L., Sibiryakov, S., Ultralight dark matter resonates with binary pulsars (2017) Phys. Rev. Lett., 118, p. 261102. , https://doi.org/10.1103/PhysRevLett.118.261102[1612.06789]
  • Kehl, M.S., Wex, N., Krämer, M., Liu, K., Future measurements of the Lense-Thirring effect in the Double Pulsar (2015) Proceedings of the 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (MG14), , July 12-18, Rome, Italy [1605.00408]
  • Blandford, R., Teukolsky, S.A., Arrival-time analysis for a pulsar in a binary system (1976) Astrophys. J., 205, p. 580
  • Damour, T., Taylor, J.H., Strong field tests of relativistic gravity and binary pulsars (1992) Phys. Rev., 45 (6), p. 1840
  • Liu, K., Prospects for high-precision pulsar timing (2011) Mon. Not. Roy. Astron. Soc., 417, p. 2916. , https://doi.org/10.1111/j.1365-2966.2011.19452.x[1107.3086]
  • An, H., Pospelov, M., Pradler, J., New stellar constraints on dark photons (2013) Phys. Lett., 725, p. 190. , https://doi.org/10.1016/j.physletb.2013.07.008[1302.3884]
  • An, H., Pospelov, M., Pradler, J., Ritz, A., Direct detection constraints on dark photon dark matter (2015) Phys. Lett., 747, p. 331. , https://doi.org/10.1016/j.physletb.2015.06.018[1412.8378]
  • Dubovsky, S., Hernández-Chifflet, G., Heating up the Galaxy with Hidden Photons (2015) J. Cosmol. Astropart. Phys., 2015 (12), p. 054. , 2015 [1509.00039]
  • Heeck, J., Unbroken B-L symmetry (2014) Phys. Lett., 739, p. 256. , https://doi.org/10.1016/j.physletb.2014.10.067[1408.6845]
  • Graham, P.W., Dark matter direct detection with accelerometers (2016) Phys. Rev., 93, p. 075029. , https://doi.org/10.1103/PhysRevD.93.075029[1512.06165]
  • Brdar, V., Fuzzy dark matter and nonstandard neutrino interactions (2018) Phys. Rev., 97, p. 043001. , https://doi.org/10.1103/PhysRevD.97.043001[1705.09455]
  • Prakash, M., Composition and structure of protoneutron stars (1997) Phys. Rept., 280, p. 1. , https://doi.org/10.1016/S0370-1573(96)00023-3[nucl-th/9603042]
  • Wagner, T.A., Schlamminger, S., Gundlach, J.H., Adelberger, E.G., Torsion-balance tests of the weak equivalence principle (2012) Class. Quant. Grav., 29 (18), p. 184002. , https://doi.org/10.1088/0264-9381/29/18/184002[1207.2442]
  • Dobrescu, B.A., Frugiuele, C., Hidden GeV-scale interactions of quarks (2014) Phys. Rev. Lett., 113, p. 061801. , https://doi.org/10.1103/PhysRevLett.113.061801[1404.3947]
  • Dror, J.A., Lasenby, R., Pospelov, M., New constraints on light vectors coupled to anomalous currents (2017) Phys. Rev. Lett., 119, p. 141803. , https://doi.org/10.1103/PhysRevLett.119.141803[1705.06726]
  • Dror, J.A., Lasenby, R., Pospelov, M., Dark forces coupled to nonconserved currents (2017) Phys. Rev., 96, p. 075036. , https://doi.org/10.1103/PhysRevD.96.075036[1707.01503]
  • Krämer, M., Stappers, B., Pulsar Science with the SKA, , [1507.04423]
  • Krämer, M., Strong-field tests of gravity using pulsars and black holes (2004) New Astron. Rev., 48, p. 993. , https://doi.org/10.1016/j.newar.2004.09.020[astro-ph/0409379]
  • Keane, E.F., A Cosmic Census of Radio Pulsars with the SKA (2015) PoS, 14, p. 040. , https://doi.org/10.22323/1.215.0040AASKA14040[1501.00056]
  • D. Blas, D. Loacute;pez Nacir and S. Sibiryakov , to appear; Damour, T., Schaefer, G., New tests of the strong equivalence principle using binary pulsar data (1991) Phys. Rev. Lett., 66 (20), p. 2549
  • Zhu, W.W., Tests of Gravitational Symmetries with Pulsar Binary J1713+0747, , Tests of gravitational symmetries with pulsar binary J1713+0747, [1802.09206]
  • Freire, P.C.C., Krämer, M., Wex, N., Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars (2012) Class. Quant. Grav., 29 (18), p. 184007. , https://doi.org/10.1088/0264-9381/29/18/184007[1205.3751]
  • Aoki, K., Maeda, K.-I., Condensate of massive graviton and dark matter (2018) Phys. Rev., 97, p. 044002. , https://doi.org/10.1103/PhysRevD.97.044002[1707.05003]
  • J.M. Armaleo, D. Loacute;pez Nacir and F. Urban , work in progress; Danby, J., (1970) Fundamentals of Celestial Mechanics, , MacMillan, U.K
  • Poisson, E., Will, C., (2014) Gravity: Newtonian, Post-newtonian, Relativistic, , Cambridge University Press, Cambridge U.K
  • Freire, P.C.C., On the nature and evolution of the unique binary pulsar J1903+0327 (2011) Mon. Not. Roy. Astron. Soc., 412, p. 2763. , https://doi.org/10.1111/j.1365-2966.2010.18109.x[1011.5809]
  • Madsen, E.C., Timing the main-sequence-star binary pulsar J1740-3052 (2012) Mon. Not. Roy. Astron. Soc., 425, p. 2378. , https://doi.org/10.1111/j.1365-2966.2012.21691.x[1207.2202]
  • Wex, N., Testing Relativistic Gravity with Radio Pulsars, , [1402.5594]
  • Shannon, R.M., Johnston, S., Manchester, R.N., The kinematics and orbital dynamics of the PSR B1259-63/LS 2883 system from 23yr of pulsar timing (2014) Mon. Not. Roy. Astron. Soc., 437, p. 3255. , https://doi.org/10.1093/mnras/stt2123[1311.0588]
  • Arzoumanian, Z., The NANOGrav 11-year data set: High-precision timing of 45 millisecond pulsars (2018) Astrophys. J. Suppl., 235 (2), p. 37. , https://doi.org/10.3847/1538-4365/aab5b0[1801.01837]
  • Desvignes, G., High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array (2016) Mon. Not. Roy. Astron. Soc., 458, p. 3341. , https://doi.org/10.1093/mnras/stw483[1602.08511]
  • Stovall, K., The green bank northern celestial cap pulsar survey - I: Survey description, data analysis and initial results (2014) Astrophys. J., 791 (1), p. 67. , https://doi.org/10.1088/0004-637X/791/1/67[1406.5214]
  • Gonzalez, M.E., High-precision timing of 5 millisecond pulsars: Space velocities, binary evolution and equivalence principles (2011) Astrophys. J., 743 (2), p. 102. , https://doi.org/10.1088/0004-637X/743/2/102[1109.5638]
  • Antoniadis, J., A massive pulsar in a compact relativistic binary (2013) Science, 340, p. 6131. , https://doi.org/10.1126/science.1233232[1304.6875]
  • Freire, P.C.C., The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity (2012) Mon. Not. Roy. Astron. Soc., 423, p. 3328. , https://doi.org/10.1111/j.1365-2966.2012.21253.x[1205.1450]
  • Caputo, A., Zavala, J., Blas, D., Binary pulsars as probes of a galactic dark matter disk (2018) Phys. Dark Univ., 19, p. 1. , https://doi.org/10.1016/j.dark.2017.10.005[1709.03991]

Citas:

---------- APA ----------
Nacir, D.L. & Urban, F.R. (2018) . Vector fuzzy dark matter, fifth forces, and binary pulsars. Journal of Cosmology and Astroparticle Physics, 2018(10).
http://dx.doi.org/10.1088/1475-7516/2018/10/044
---------- CHICAGO ----------
Nacir, D.L., Urban, F.R. "Vector fuzzy dark matter, fifth forces, and binary pulsars" . Journal of Cosmology and Astroparticle Physics 2018, no. 10 (2018).
http://dx.doi.org/10.1088/1475-7516/2018/10/044
---------- MLA ----------
Nacir, D.L., Urban, F.R. "Vector fuzzy dark matter, fifth forces, and binary pulsars" . Journal of Cosmology and Astroparticle Physics, vol. 2018, no. 10, 2018.
http://dx.doi.org/10.1088/1475-7516/2018/10/044
---------- VANCOUVER ----------
Nacir, D.L., Urban, F.R. Vector fuzzy dark matter, fifth forces, and binary pulsars. J. Cosmol. Astroparticle Phys. 2018;2018(10).
http://dx.doi.org/10.1088/1475-7516/2018/10/044