Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We consider the evolution of electromagnetic fields coupled to conduction currents during the reheating era after inflation, and prior to the establishing of the proton-electron plasma. We assume that the currents may be described by second order causal hydrodynamics. The resulting theory is not conformally invariant. The expansion of the Universe produces temperature gradients which couple to the current and generally oppose Ohmic dissipation. Although the effect is not strong, it suggests that the unfolding of hy-drodynamic instabilities in these models may follow a different pattern than in first order theories, and even than in second order theories on non expanding backgrounds. © 2015 IOP Publishing Ltd and Sissa Medialab srl.

Registro:

Documento: Artículo
Título:Non-conformal evolution of magnetic fields during reheating
Autor:Calzetta, E.; Kandus, A.
Filiación:Departamento de Física, IFIBA, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Caba, Argentina
LATO, DCET, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna km 16 s/n, Ilhéus, BA, Brazil
Palabras clave:Cosmic magnetic fields theory; Physics of the early universe; Primordial magnetic fields
Año:2015
Volumen:2015
Número:3
DOI: http://dx.doi.org/10.1088/1475-7516/2015/03/045
Título revista:Journal of Cosmology and Astroparticle Physics
Título revista abreviado:J. Cosmol. Astroparticle Phys.
ISSN:14757516
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14757516_v2015_n3_p_Calzetta

Referencias:

  • Kandus, A., Kunze, K.E., Tsagas, C.G., Primordial magnetogenesis (2011) Phys. Rept., 505, p. 1. , [arXiv:1007.3891] [INSPIRE]
  • Durrer, R., Neronov, A., Cosmological magnetic fields: Their generation, evolution and observation (2013) Astron. Astrophys. Rev., 21, p. 62. , [arXiv:1303.7121] [INSPIRE]
  • Klein, U., Fletcher, A., (2015) Galactic and Intergalactic Magnetic Fields, , Springer International Publishing, Switzerland
  • Fujita, T., Yokoyama, S., Critical constraint on inflationary magnetogenesis (2014) JCAP, 3, p. 013. , [Erratum ibid. 1405 (2014) E02] [arXiv:1402.0596] [INSPIRE]
  • Tsagas, C.G., Kandus, A., Superadiabatic-type magnetic amplification in conventional cosmology (2005) Phys. Rev. D, 71. , [astro-ph/0504089] [INSPIRE]
  • Tsagas, C.G., Kandus, A., Geometrical generation of cosmic magnetic fields within standard electromagnetism (2005) Braz. J. Phys., 35, p. 1070
  • Banerjee, R., Jedamzik, K., The evolution of cosmic magnetic fields: From the very early universe, to recombination, to the present (2004) Phys. Rev. D, 70. , [astro-ph/0410032] [INSPIRE]
  • Calzetta, E., Kandus, A., Primordial magnetic helicity from stochastic electric currents (2014) Phys. Rev. D, 89. , [arXiv:1403.1193] [INSPIRE]
  • Calzetta, E., Kandus, A., Primordial magnetic field amplification from turbulent reheating (2010) JCAP, 8, p. 007. , [arXiv:1004.1994] [INSPIRE]
  • Calzetta, E.A., Kandus, A., Selfconsistent estimates of magnetic fields from reheating (2002) Phys. Rev. D, 65. , [astro-ph/0110341] [INSPIRE]
  • Calzetta, E.A., Kandus, A., Mazzitelli, F.D., Primordial magnetic fields induced by cosmological particle creation (1998) Phys. Rev. D, 57, p. 7139. , [astro-ph/9707220] [INSPIRE]
  • Saveliev, A., Jedamzik, K., Sigl, G., Time evolution of the large-scale tail of non-helical primordial magnetic fields with back-reaction of the turbulent medium (2012) Phys. Rev. D, 86. , [arXiv:1208.0444] [INSPIRE]
  • Saveliev, A., Jedamzik, K., Sigl, G., Evolution of helical cosmic magnetic fields as predicted by magnetohydrodynamic closure theory (2013) Phys. Rev. D, 87. , [arXiv:1304.3621] [INSPIRE]
  • Wagstaff, J.M., Banerjee, R., Schleicher, D., Sigl, G., Magnetic field amplification by the small-scale dynamo in the early universe (2014) Phys. Rev. D, 89. , [arXiv:1304.4723] [INSPIRE]
  • Amin, M.A., Hertzberg, M.P., Kaiser, D.I., Karouby, J., Nonperturbative dynamics of reheating after inflation: A review (2015) Int. J. Mod. Phys. D, 24. , [arXiv:1410.3808] [INSPIRE]
  • Martin, J., Ringeval, C., Vennin, V., Observing inflationary reheating (2015) Phys. Rev. Lett., 114. , [arXiv:1410.7958] [INSPIRE]
  • Starobinsky, A.A., A new type of isotropic cosmological models without singularity (1980) Phys. Lett. B, 91, p. 99. , [INSPIRE]
  • Mukhanov, V., (2005) Physical Foundations of Cosmology, , Cambridge University Press, Cambridge U.K
  • Kandus, A., Calzetta, E.A., Mazzitelli, F.D., Wagner, C.E.M., Cosmological magnetic fields from gauge mediated supersymmetry breaking models (2000) Phys. Lett. B, 472, p. 287. , [hep-ph/9908524]
  • Carena, M., Heinemeyer, S., Ståal, O., Wagner, C.E.M., Weiglein, G., MSSM higgs boson searches at the LHC: Benchmark scenarios after the discovery of a higgs-like particle (2013) Eur. Phys. J. C, 73, p. 2552. , [arXiv:1302.7033] [INSPIRE]
  • Heinz, U., Snellings, R., Collective flow and viscosity in relativistic heavy-ion collisions (2013) Ann. Rev. Nucl. Part. Sci., 63, p. 123. , [arXiv:1301.2826] [INSPIRE]
  • Gale, C., Jeon, S., Schenke, B., Hydrodynamic modeling of heavy-ion collisions (2013) Int. J. Mod. Phys. A, 28. , [arXiv:1301.5893] [INSPIRE]
  • Hirano, T., Van Der Kolk, N., Bilandzic, A., Hydrodynamics and flow (2010) Lect. Notes Phys., 785, p. 139. , [arXiv:0808.2684] [INSPIRE]
  • Romatschke, P., New developments in relativistic viscous hydrodynamics (2010) Int. J. Mod. Phys. E, 19, p. 1. , [arXiv:0902.3663] [INSPIRE]
  • Calzetta, E., Real Relativistic Fluids in Heavy Ion Collisions, , arXiv:1310.0841 [INSPIRE]
  • Eckart, C., The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid (1940) Phys. Rev., 58, p. 919. , [INSPIRE]
  • Landau, L.D., Lifshitz, E.M., (1959) Fluid Mechanics, , Pergamon Press, Oxford, England
  • Hiscock, W.A., Lindblom, L., Stability and causality in dissipative relativistic fluids (1983) Annals Phys., 151, p. 466. , [INSPIRE]
  • Hiscock, W.A., Lindblom, L., Generic instabilities in first-order dissipative relativistic fluid theories (1985) Phys. Rev. D, 31, p. 725. , [INSPIRE]
  • Ván, P., Biró, T.S., First order and stable relativistic dissipative hydrodynamics (2012) Phys. Lett. B, 709, p. 106. , [arXiv:1109.0985] [INSPIRE]
  • Garcia-Perciante, A.L., Mondragon-Suarez, H., Brun-Battistini, D., Sandoval-Villalbazo, A., On the Stability Problem in Relativistic Thermodynamics: Implications of the Chapman-Enskog Formalism, , arXiv:1406.3666 [INSPIRE]
  • Israel, W., Covariant fluid mechanics and thermodynamics: An introduction (1989) Relativistic Fluid Dynamics, , A. Anile and Y. Choquet-Bruhat eds., Springer, New York U.S.A
  • Israel, W., Nonstationary irreversible thermodynamics: A causal relativistic theory (1976) Annals Phys., 100, p. 310. , [INSPIRE]
  • Olson, T.S., Stability and causality in the Israel-stewart energy frame theory (1990) Annals Phys., 199, p. 18. , [INSPIRE]
  • Olson, T.S., Hiscock, W.A., Plane steady shock waves in Israel-stewart fluids (1990) Annals Phys., 204, p. 331. , [INSPIRE]
  • Israel, W., Stewart, J.M., Transient relativistic thermodynamics and kinetic theory (1979) Annals Phys., 118, p. 341. , [INSPIRE]
  • Luzum, M., Romatschke, P., Conformal relativistic viscous hydrodynamics: Applications to RHIC results at √sNN = 200 GeV (2008) Phys. Rev. C, 78. , [Erratum ibid. C 79 (2009) 039903] [arXiv:0804.4015] [INSPIRE]
  • Bhalerao, R.S., Gupta, S., Aspects of causal viscous hydrodynamics (2008) Phys. Rev. C, 77. , [arXiv:0706.3428] [INSPIRE]
  • Bhalerao, R.S., Jaiswal, A., Pal, S., Sreekanth, V., Relativistic viscous hydrodynamics for heavy-ion collisions: A comparison between the chapman-enskog and grad methods (2014) Phys. Rev. C, 89. , [arXiv:1312.1864] [INSPIRE]
  • Jou, D., Casas-Vázquez, J., Lebon, G., (2001) Extended Irreversible Thermodynamics, , Springer, Berlin Germany
  • Jou, D., Casas-Vázquez, J., Lebon, G., Extended irreversible thermodynamics revisited (1999) Rept. Prog. Phys., 62, p. 1035
  • Geroch, R.P., Lindblom, L., Dissipative relativistic fluid theories of divergence type (1990) Phys. Rev. D, 41, p. 1855. , [INSPIRE]
  • Geroch, R.P., Lindblom, L., Causal theories of dissipative relativistic fluids (1991) Annals Phys., 207, p. 394
  • Calzetta, E., Relativistic fluctuating hydrodynamics (1998) Class. Quant. Grav., 15, p. 653. , [gr-qc/9708048] [INSPIRE]
  • Nagy, G.B., Reula, O.A., On the causality of a dilute gas as a dissipative relativistic fluid theory of divergence type (1995) J. Phys. A, 28, p. 6943
  • Calzetta, E., Thibeault, M., Relativistic theories of interacting fields and fluids (2001) Phys. Rev. D, 63. , [hep-ph/0012375] [INSPIRE]
  • Maxwell, J.C., On the dynamical theory of gases (1867) Phil. Trans. Roy. Soc. Lond., 157, p. 49
  • Cattaneo, C., Sulla conduzione de calore (1948) Atti del Semin. Mat. E Fis. Univ. Modena, 3, p. 3
  • Cattaneo, C., Sur une forme de l' équation de la chaleur éliminant le paradoxe d'une propagation instantanée (1958) C. R. Acad. Sci. Paris, 247, p. 431
  • Joseph, D.D., Preziosi, L., Heat waves (1989) Rev. Mod. Phys., 61, p. 41. , [INSPIRE]
  • García-Perciante, A.L., Sandoval-Villalbazo, A., García-Colín, L.S., Generalized relativistic chapman-enskog solution of the boltzmann equation (2008) Physica A, 387, p. 5073. , [arXiv:0708.3252] [INSPIRE]
  • Jaiswal, A., Relaxation-time approximation and relativistic third-order viscous hydrodynamics from kinetic theory (2014) Nucl. Phys. A, , [arXiv:1407.0837] [INSPIRE]
  • Jaiswal, A., Relativistic third-order dissipative fluid dynamics from kinetic theory (2013) Phys. Rev. C, 88. , [arXiv:1305.3480] [INSPIRE]
  • Jaiswal, A., Formulation of Relativistic Dissipative Fluid Dynamics and its Applications in Heavy-ion Collisions, , arXiv:1408.0867 [INSPIRE]
  • Jaiswal, A., Bhalerao, R.S., Pal, S., Complete relativistic second-order dissipative hydrodynamics from the entropy principle (2013) Phys. Rev. C, 87. , [arXiv:1302.0666] [INSPIRE]
  • Chattopadhyay, C., Jaiswal, A., Pal, S., Ryblewski, R., Relativistic third-order viscous corrections to the entropy four-current from kinetic theory (2015) Phys. Rev. C, 91. , [arXiv:1411.2363] [INSPIRE]
  • Tsumura, K., Kunihiro, T., Causal Hydrodynamics from Kinetic Theory by Doublet Scheme in Renormalization-group Method, , arXiv:1311.7059 [INSPIRE]
  • Denicol, G.S., Koide, T., Rischke, D.H., Dissipative relativistic fluid dynamics: A new way to derive the equations of motion from kinetic theory (2010) Phys. Rev. Lett., 105. , [arXiv:1004.5013] [INSPIRE]
  • Denicol, G.S., Molnár, E., Niemi, H., Rischke, D.H., Derivation of fluid dynamics from kinetic theory with the 14-moment approximation (2012) Eur. Phys. J. A, 48, p. 170. , [arXiv:1206.1554] [INSPIRE]
  • Baier, R., Romatschke, P., Son, D.T., Starinets, A.O., Stephanov, M.A., Relativistic viscous hydrodynamics, conformal invariance and holography (2008) JHEP, 4, p. 100. , [arXiv:0712.2451] [INSPIRE]
  • Takamoto, M., Inutsuka, S.-I., The relativistic kinetic dispersion relation: Comparison of the relativistic bhatnagar-gross-krook model and grad's 14-moment expansion (2010) Physica A, 389, p. 4580. , [arXiv:1006.2663] [INSPIRE]
  • Huang, X.-G., Koide, T., Shear viscosity, bulk viscosity and relaxation times of causal dissipative relativistic fluid-dynamics at finite temperature and chemical potential (2012) Nucl. Phys. A, 889, p. 73. , [arXiv:1105.2483] [INSPIRE]
  • Martinez, M., Strickland, M., Dissipative dynamics of highly anisotropic systems (2010) Nucl. Phys. A, 848, p. 183. , [arXiv:1007.0889] [INSPIRE]
  • Martinez, M., Strickland, M., Non-boost-invariant anisotropic dynamics (2011) Nucl. Phys. A, 856, p. 68. , [arXiv:1011.3056] [INSPIRE]
  • Strickland, M., Anisotropic hydrodynamics: Three lectures (2014) Acta Phys. Polon. B, 45, p. 2355. , [arXiv:1410.5786] [INSPIRE]
  • Brandenburg, A., Kahniashvili, T., Tevzadze, A.G., Nonhelical inverse transfer of a decaying turbulent magnetic field (2015) Phys. Rev. Lett., 114. , [arXiv:1404.2238] [INSPIRE]
  • Berera, A., Linkmann, M., Magnetic helicity and the evolution of decaying magnetohydrodynamic turbulence (2014) Phys. Rev. E, 90. , [arXiv:1405.6756] [INSPIRE]
  • Mrówczyns̈ki, S., Plasma instability at the initial stage of ultrarelativistic heavy-ion collisions (1993) Phys. Lett. B, 314, p. 118. , [INSPIRE]
  • Mrówczyns̈ki, S., Thoma, M.H., What do electromagnetic plasmas tell us about quark-gluon plasma? (2007) Ann. Rev. Nucl. Part. Sci., 57, p. 61. , [nucl-th/0701002] [INSPIRE]
  • Schenke, B., Strickland, M., Greiner, C., Thoma, M.H., A model of the effect of collisions on QCD plasma instabilities (2006) Phys. Rev. D, 73. , [hep-ph/0603029] [INSPIRE]
  • Attems, M., Rebhan, A., Strickland, M., Instabilities of an anisotropically expanding non-abelian plasma: 3D+3V discretized hard-loop simulations (2013) Phys. Rev. D, 87. , [arXiv:1207.5795] [INSPIRE]
  • Mannarelli, M., Manuel, C., Chromohydrodynamical instabilities induced by relativistic jets (2007) Phys. Rev. D, 76. , [arXiv:0705.1047] [INSPIRE]
  • Mannarelli, M., Manuel, C., Jet-induced gauge field instabilities in the quark-gluon plasma: A kinetic theory approach (2008) Phys. Rev. D, 77. , [arXiv:0707.3893] [INSPIRE]
  • Calzetta, E., Peralta-Ramos, J., Hydrodynamic approach to QGP instabilities (2013) Phys. Rev. D, 88. , [arXiv:1309.5412] [INSPIRE]
  • Belinskii, V.A., Nikomarov, E.S., Khalatnikov, I.M., Investigation of the cosmological evolution of viscoelastic matter with causal thermodynamics (1979) J. Exp. Theor. Phys., 50, p. 213
  • Pavón, D., Jou, D., Casas-Vázquez, J., On a covariant formulation of dissipative phenomena (1982) Annales Poincaré Phys. Theor., 36, p. 79
  • Pavón, D., Bafaluy, J., Jou, D., Causal friedmann-Robertson-walker cosmology (1991) Class. Quant. Grav., 8, p. 347. , [INSPIRE]
  • Zimdahl, W., Pavón, D., Fluid cosmology with decay and production of particles (1994) Gen. Rel. Grav., 26, p. 1259. , [INSPIRE]
  • Zimdahl, W., Pavón, D., Maartens, R., Reheating and causal thermodynamics (1997) Phys. Rev. D, 55, p. 4681. , [astro-ph/9611147] [INSPIRE]
  • Sussman, R.A., Pavón, D., Exact inhomogeneous cosmologies whose source is a radiation matter mixture with consistent thermodynamics (1999) Phys. Rev. D, 60. , [gr-qc/9907010] [INSPIRE]
  • Zimdahl, W., Cosmological particle production, causal thermodynamics and inflationary expansion (2000) Phys. Rev. D, 61. , [astro-ph/9910483] [INSPIRE]
  • Zimdahl, W., Schwarz, D.J., Balakin, A.B., Pavón, D., Cosmic anti-friction and accelerated expansion (2001) Phys. Rev. D, 64. , [astro-ph/0009353] [INSPIRE]
  • Piattella, O.F., Fabris, J.C., Zimdahl, W., Bulk viscous cosmology with causal transport theory (2011) JCAP, 5, p. 029. , [arXiv:1103.1328] [INSPIRE]
  • Maartens, R., Dissipative cosmology (1995) Class. Quant. Grav., 12, p. 1455. , [INSPIRE]
  • Bastero-Gil, M., Berera, A., Moss, I.G., Ramos, R.O., Cosmological fluctuations of a random field and radiation fluid (2014) JCAP, 5, p. 004. , [arXiv:1401.1149] [INSPIRE]
  • Floerchinger, S., Tetradis, N., Wiedemann, U.A., Accelerating cosmological expansion from shear and bulk viscosity (2015) Phys. Rev. Lett., 114. , [arXiv:1411.3280] [INSPIRE]
  • Denicol, G.S., Heinz, U.W., Martinez, M., Noronha, J., Strickland, M., Studying the validity of relativistic hydrodynamics with a new exact solution of the boltzmann equation (2014) Phys. Rev. D, 90. , [arXiv:1408.7048] [INSPIRE]
  • Denicol, G.S., Heinz, U.W., Martinez, M., Noronha, J., Strickland, M., New exact solution of the relativistic boltzmann equation and its hydrodynamic limit (2014) Phys. Rev. Lett., 113. , [arXiv:1408.5646] [INSPIRE]
  • Hatta, Y., Noronha, J., Xiao, B.-W., A systematic study of exact solutions in second-order conformal hydrodynamics (2014) Phys. Rev. D, 89. , [arXiv:1403.7693] [INSPIRE]
  • Hatta, Y., Xiao, B.-W., Building up the elliptic flow: Analytical insights (2014) Phys. Lett. B, 736, p. 180. , [arXiv:1405.1984] [INSPIRE]
  • Elias, M., Peralta-Ramos, J., Calzetta, E., Heavy quark collisional energy loss in the quark-gluon plasma including finite relaxation time (2014) Phys. Rev. D, 90. , [arXiv:1404.7790] [INSPIRE]
  • Peralta-Ramos, J., Calzetta, E., Macroscopic approximation to relativistic kinetic theory from a nonlinear closure (2013) Phys. Rev. D, 87. , [arXiv:1212.0824] [INSPIRE]
  • Peralta-Ramos, J., Calzetta, E., Shear viscosity from thermal fluctuations in relativistic conformal fluid dynamics (2012) JHEP, 2, p. 085. , [arXiv:1109.3833] [INSPIRE]
  • Peralta-Ramos, J., Calzetta, E., Divergence-type 2+1 dissipative hydrodynamics applied to heavy-ion collisions (2010) Phys. Rev. C, 82. , [arXiv:1003.1091] [INSPIRE]
  • Peralta-Ramos, J., Calzetta, E., Divergence-type theory of conformal fields (2010) Int. J. Mod. Phys. D, 19, p. 1721. , [arXiv:0912.0673] [INSPIRE]
  • Peralta-Ramos, J., Calzetta, E., Divergence-type nonlinear conformal hydrodynamics (2009) Phys. Rev. D, 80. , [arXiv:0908.2646] [INSPIRE]
  • Calzetta, E., Peralta-Ramos, J., Linking the hydrodynamic and kinetic description of a dissipative relativistic conformal theory (2010) Phys. Rev. D, 82. , [arXiv:1009.2400] [INSPIRE]
  • Peralta-Ramos, J., Calzetta, E., Effective dynamics of a nonabelian plasma out of equilibrium (2012) Phys. Rev. D, 86. , [arXiv:1208.2715] [INSPIRE]
  • Calzetta, E., Non abelian hydrodynamics and heavy ion collisions (2014) AIP Conf. Proc., 1578, p. 74. , [arXiv:1311.1845] [INSPIRE]
  • Marle, C., Sur l'établissement des équations de l'hydrodynamique des fluids relativistes dissipatifs I - L'Équation de boltzmann relativiste (1969) Annales Poincaré Phys. Theor., 10, p. 67
  • Marle, C., Sur l'établissement des équations de l'hydrodynamique des fluids relativistes dissipatifs II - Méthodes de résolution approchée de l'équation de boltzmann relativiste (1969) Annales Poincaré Phys. Theor., 10, p. 127
  • Anderson, J.L., Witting, H.R., A relativistic relaxation-time model for the boltzmann equation (1974) Physica, 74, p. 466
  • Anderson, J.L., Witting, H.R., Relativistic quantum transport coefficients (1974) Physica, 74, p. 489
  • Ellis, G.F.R., Relativistic Cosmology (1973) Cargèse Lectures in Physics, , E. Schatzman eds., Gordon and Breach, New York U.S.A
  • Abramowitz, M., Stegun, I., (1972) Handbook of Mathematical Functions, , Dover Publications, New York U.S.A
  • Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W., (2010) NIST Handbook of Mathematical Functions, , Cambridge University Press, Cambridge U.K

Citas:

---------- APA ----------
Calzetta, E. & Kandus, A. (2015) . Non-conformal evolution of magnetic fields during reheating. Journal of Cosmology and Astroparticle Physics, 2015(3).
http://dx.doi.org/10.1088/1475-7516/2015/03/045
---------- CHICAGO ----------
Calzetta, E., Kandus, A. "Non-conformal evolution of magnetic fields during reheating" . Journal of Cosmology and Astroparticle Physics 2015, no. 3 (2015).
http://dx.doi.org/10.1088/1475-7516/2015/03/045
---------- MLA ----------
Calzetta, E., Kandus, A. "Non-conformal evolution of magnetic fields during reheating" . Journal of Cosmology and Astroparticle Physics, vol. 2015, no. 3, 2015.
http://dx.doi.org/10.1088/1475-7516/2015/03/045
---------- VANCOUVER ----------
Calzetta, E., Kandus, A. Non-conformal evolution of magnetic fields during reheating. J. Cosmol. Astroparticle Phys. 2015;2015(3).
http://dx.doi.org/10.1088/1475-7516/2015/03/045