Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We extend the resummation method of Anselmi & Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available. © 2014 IOP Publishing Ltd and Sissa Medialab srl.

Registro:

Documento: Artículo
Título:Nonlinear effects of dark energy clustering beyond the acoustic scales
Autor:Anselmi, S.; Nacir, D.L.; Sefusatti, E.
Filiación:Department of Physics/CERCA/ISO, Case Western Reserve University, Cleveland, OH 44106-7079, United States
Abdus Salam International Center for Theoretical Physics, Strada costiera 11, I-34151 Trieste, Italy
Departamento de Física and IFIBA, FCEyN UBA, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
INAF - Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (LC), Italy
Palabras clave:cosmological perturbation theory; dark energy theory; power spectrum
Año:2014
Volumen:2014
Número:7
DOI: http://dx.doi.org/10.1088/1475-7516/2014/07/013
Título revista:Journal of Cosmology and Astroparticle Physics
Título revista abreviado:J. Cosmol. Astroparticle Phys.
ISSN:14757516
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14757516_v2014_n7_p_Anselmi

Referencias:

  • Riess, A.G., Observational evidence from supernovae for an accelerating universe and a cosmological constant (1998) Astron. J., 116 (3), p. 1009. , Supernova Search Team collaboration 10.1086/300499 1538-3881 1009
  • Perlmutter, S., Measurements of Omega and Lambda from 42 high redshift supernovae (1999) Astrophys. J., 517 (2), p. 565. , Supernova Cosmology Project collaboration 10.1086/307221 0004-637X 565
  • Copeland, E.J., Sami, M., Tsujikawa, S., Dynamics of dark energy (2006) Int. J. Mod. Phys., 15, p. 1753. , 10.1142/S021827180600942X 0218-2718 D
  • Laureijs, R., Euclid Definition Study Report, , EUCLID collaboration
  • Zlatev, I., Wang, L.-M., Steinhardt, P.J., Quintessence, cosmic coincidence and the cosmological constant (1999) Phys. Rev. Lett., 82, p. 896. , 10.1103/PhysRevLett.82.896
  • Ferreira, P.G., Joyce, M., Structure formation with a selftuning scalar field (1997) Phys. Rev. Lett., 79, p. 4740. , 10.1103/PhysRevLett.79.4740
  • Creminelli, P., Luty, M.A., Nicolis, A., Senatore, L., Starting the universe: Stable violation of the null energy condition and non-standard cosmologies (2006) J. High Energy Phys., 2006 (12), p. 080. , 1126-6708 080
  • Creminelli, P., D'Amico, G., Norena, J., Vernizzi, F., The Effective Theory of Quintessence: The w < -1 Side Unveiled (2009) J. Cosmol. Astropart. Phys., 2009 (2), p. 018. , 1475-7516 018
  • Cheung, C., Creminelli, P., Fitzpatrick, A.L., Kaplan, J., Senatore, L., The effective field theory of inflation (2008) J. High Energy Phys., 2008 (3), p. 014. , 1126-6708 014
  • Ade, P.A.R., Planck 2013 Results. XVI. Cosmological Parameters, , Planck collaboration
  • Rest, A., Cosmological Constraints from Measurements of Type Ia Supernovae Discovered during the First 1.5 Years of the Pan-STARRS1 Survey
  • Arkani-Hamed, N., Cheng, H.-C., Luty, M.A., Mukohyama, S., Ghost condensation and a consistent infrared modification of gravity (2004) J. High Energy Phys., 2004 (5), p. 074. , 1126-6708 074
  • Weller, J., Lewis, A.M., Large scale cosmic microwave background anisotropies and dark energy (2003) Mon. Not. Roy. Astron. Soc., 346, p. 987. , 10.1111/j.1365-2966.2003.07144.x 0035-8711
  • Bean, R., Dore, O., Probing dark energy perturbations: The Dark energy equation of state and speed of sound as measured by WMAP (2004) Phys. Rev., 69, p. 083503. , 10.1103/PhysRevD.69.083503 0556-2821 D
  • Dedeo, S., Caldwell, R.R., Steinhardt, P.J., Effects of the sound speed of quintessence on the microwave background and large scale structure (2003) Phys. Rev., 67, p. 103509. , 10.1103/PhysRevD.67.103509 0556-2821 D
  • Hannestad, S., Constraints on the sound speed of dark energy (2005) Phys. Rev., 71, p. 103519. , 10.1103/PhysRevD.71.103519 0556-2821 D
  • Erickson, J.K., Caldwell, R.R., Steinhardt, P.J., Armendariz-Picon, C., Mukhanov, V.F., Measuring the speed of sound of quintessence (2002) Phys. Rev. Lett., 88, p. 121301. , 10.1103/PhysRevLett.88.121301
  • De, P.R., Huterer, D., Linder, E.V., Measuring the speed of dark: Detecting dark energy perturbations (2010) Phys. Rev., 81, p. 103513. , 10.1103/PhysRevD.81.103513 0556-2821 D
  • Sapone, D., Kunz, M., Kunz, M., Fingerprinting dark energy (2009) Phys. Rev., 80, p. 083519. , 10.1103/PhysRevD.80.083519 0556-2821 D
  • Takada, M., Can a galaxy redshift survey measure dark energy clustering? (2006) Phys. Rev., 74, p. 043505. , 10.1103/PhysRevD.74.043505 0556-2821 D
  • Torres-Rodriguez, A., Cress, C.M., Constraining the Nature of Dark Energy using the SKA (2007) Mon. Not. Roy. Astron. Soc., 376, p. 1831. , 10.1111/j.1365-2966.2007.11565.x 0035-8711
  • Hu, W., Scranton, R., Measuring dark energy clustering with CMB-galaxy correlations (2004) Phys. Rev., 70, p. 123002. , 10.1103/PhysRevD.70.123002 0556-2821 D
  • Corasaniti, P.-S., Giannantonio, T., Melchiorri, A., Constraining dark energy with cross-correlated CMB and large scale structure data (2005) Phys. Rev., 71, p. 123521. , 10.1103/PhysRevD.71.123521 0556-2821 D
  • Sefusatti, E., Vernizzi, F., Cosmological structure formation with clustering quintessence (2011) J. Cosmol. Astropart. Phys., 2011 (3), p. 047. , 1475-7516 047
  • D'Amico, G., Sefusatti, E., The nonlinear power spectrum in clustering quintessence cosmologies (2011) J. Cosmol. Astropart. Phys., 2011 (11), p. 013. , 1475-7516 013
  • Anselmi, S., Ballesteros, G., Pietroni, M., Non-linear dark energy clustering (2011) J. Cosmol. Astropart. Phys., 2011 (11), p. 014. , 1475-7516 014
  • Baldi, M., Dark energy simulations (2012) Phys. Dark Univ., 1, p. 162. , 10.1016/j.dark.2012.10.004
  • Kuhlen, M., Vogelsberger, M., Angulo, R., Numerical simulations of the dark universe: State of the art and the next decade (2012) Phys. Dark Univ., 1, p. 50. , 10.1016/j.dark.2012.10.002
  • Smith, R.E., Stable clustering, the halo model and nonlinear cosmological power spectra (2003) Mon. Not. Roy. Astron. Soc., 341, p. 1311. , Virgo Consortium collaboration 10.1046/j.1365-8711.2003.06503.x 0035-8711
  • Takahashi, R., Sato, M., Nishimichi, T., Taruya, A., Oguri, M., Revising the halofit model for the nonlinear matter power spectrum (2012) Astrophys. J., 761 (2), p. 152. , 10.1088/0004-637X/761/2/152 0004-637X 152
  • Zhao, G.-B., Modeling the nonlinear clustering in modified gravity models. I. A fitting formula for the matter power spectrum of f(r) gravity (2014) Astrophys. J. Suppl., 211 (2), p. 23. , 10.1088/0067-0049/211/2/23 0067-0049 23
  • Amendola, L., Kunz, M., Sapone, D., Measuring the dark side (with weak lensing) (2008) J. Cosmol. Astropart. Phys., 2008 (4), p. 013. , 1475-7516 013
  • Sapone, D., Kunz, M., Amendola, L., Fingerprinting Dark Energy II: Weak lensing and galaxy clustering tests (2010) Phys. Rev., 82, p. 103535. , 10.1103/PhysRevD.82.103535 0556-2821 D
  • Mota, D.F., Van De, B.C., On the Spherical collapse model in dark energy cosmologies (2004) Astron. Astrophys., 421, p. 71. , 10.1051/0004-6361:20041090 0004-6361
  • Nunes, N.J., Mota, D.F., Structure formation in inhomogeneous dark energy models (2006) Mon. Not. Roy. Astron. Soc., 368, p. 751. , 10.1111/j.1365-2966.2006.10166.x 0035-8711
  • Abramo, L.R., Batista, R.C., Liberato, L., Rosenfeld, R., Structure formation in the presence of dark energy perturbations (2007) J. Cosmol. Astropart. Phys., 2007 (11), p. 012. , 1475-7516 012
  • Creminelli, P., D'Amico, G., Norena, J., Senatore, L., Vernizzi, F., Spherical collapse in quintessence models with zero speed of sound (2010) J. Cosmol. Astropart. Phys., 2010 (3), p. 027. , 1475-7516 027
  • Gunn, J.E., Gott, I., Richard, J., On the infall of matter into clusters of galaxies and some effects on their evolution (1972) Astrophys. J., 176, p. 1. , 10.1086/151605
  • Basse, T., Bjaelde, O.E., Wong, Y.Y.Y., Spherical collapse of dark energy with an arbitrary sound speed (2011) J. Cosmol. Astropart. Phys., 2011 (10), p. 038. , 1475-7516 038
  • Batista, R.C., Pace, F., Structure formation in inhomogeneous Early Dark Energy models (2013) J. Cosmol. Astropart. Phys., 2013 (6), p. 044. , 1475-7516 044
  • Press, W.H., Schechter, P., Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation (1974) Astrophys. J., 187, p. 425. , 10.1086/152650
  • Bernardeau, F., Colombi, S., Gaztanaga, E., Scoccimarro, R., Large scale structure of the universe and cosmological perturbation theory (2002) Phys. Rept., 367, p. 1. , 10.1016/S0370-1573(02)00135-7 0370-1573
  • Crocce, M., Scoccimarro, R., Renormalized cosmological perturbation theory (2006) Phys. Rev., 73, p. 063519. , 10.1103/PhysRevD.73.063519 0556-2821 D
  • Crocce, M., Scoccimarro, R., Memory of initial conditions in gravitational clustering (2006) Phys. Rev., 73, p. 063520. , 10.1103/PhysRevD.73.063520 0556-2821 D
  • Crocce, M., Scoccimarro, R., Nonlinear evolution of baryon acoustic oscillations (2008) Phys. Rev., 77, p. 023533. , 10.1103/PhysRevD.77.023533 0556-2821 D
  • Matarrese, S., Pietroni, M., Resumming cosmic perturbations (2007) J. Cosmol. Astropart. Phys., 2007 (6), p. 026. , 1475-7516 026
  • Taruya, A., Hiramatsu, T., A Closure Theory for Non-linear Evolution of Cosmological Power Spectra
  • Pietroni, M., Flowing with time: A new approach to nonlinear cosmological perturbations (2008) J. Cosmol. Astropart. Phys., 2008 (10), p. 036. , 1475-7516 036
  • Bernardeau, F., Crocce, M., Scoccimarro, R., Multi-point propagators in cosmological gravitational instability (2008) Phys. Rev., 78, p. 103521. , 10.1103/PhysRevD.78.103521 0556-2821 D
  • Bernardeau, F., Van De, R.N., Vernizzi, F., Power spectra in the eikonal approximation with adiabatic and non-adiabatic modes (2013) Phys. Rev., 87, p. 043530. , 10.1103/PhysRevD.87.043530 0556-2821 D
  • Juergens, G., Bartelmann, M., Perturbation Theory Trispectrum in the Time Renormalisation Approach
  • Blas, D., Garny, M., Konstandin, T., Cosmological perturbation theory at three-loop order (2014) J. Cosmol. Astropart. Phys., 2014 (1), p. 010. , 1475-7516 010
  • Crocce, M., Scoccimarro, R., Bernardeau, F., MPTbreeze: A Fast Renormalized Perturbative Scheme
  • Taruya, A., Bernardeau, F., Nishimichi, T., Codis, S., RegPT: Direct and fast calculation of regularized cosmological power spectrum at two-loop order (2012) Phys. Rev., 86, p. 103528. , 10.1103/PhysRevD.86.103528 0556-2821 D
  • Anselmi, S., Pietroni, M., Nonlinear Power Spectrum from Resummed Perturbation Theory: A Leap beyond the BAO Scale (2012) J. Cosmol. Astropart. Phys., 2012 (12), p. 013. , 1475-7516 013
  • Pueblas, S., Scoccimarro, R., Generation of vorticity and velocity dispersion by orbit crossing (2009) Phys. Rev., 80, p. 043504. , 10.1103/PhysRevD.80.043504 0556-2821 D
  • Valageas, P., Nishimichi, T., Combining perturbation theories with halo models (2011) Astron. Astrophys., 527, p. 87. , 10.1051/0004-6361/201015685 0004-6361
  • Pietroni, M., Mangano, G., Saviano, N., Viel, M., Coarse-grained cosmological perturbation theory (2012) J. Cosmol. Astropart. Phys., 2012 (1), p. 019. , 1475-7516 019
  • Carrasco, J.J.M., Hertzberg, M.P., Senatore, L., The effective field theory of cosmological large scale structures (2012) J. High Energy Phys., 2012 (9), p. 082. , 10.1007/JHEP09(2012)082 1029-8479 082
  • Pajer, E., Zaldarriaga, M., On the renormalization of the effective field theory of large scale structures (2013) J. Cosmol. Astropart. Phys., 2013 (8), p. 037. , 1475-7516 037
  • Valageas, P., Nishimichi, T., Taruya, A., Matter power spectrum from a Lagrangian-space regularization of perturbation theory (2013) Phys. Rev., 87, p. 083522. , 10.1103/PhysRevD.87.083522 0556-2821 D
  • Silveira, V., Waga, I., Decaying Λ cosmologies and power spectrum (1994) Phys. Rev., 50, p. 4890. , 10.1103/PhysRevD.50.4890 0556-2821 D
  • Padmanabhan, T., Cosmological constant: The Weight of the vacuum (2003) Phys. Rept., 380, p. 235. , 10.1016/S0370-1573(03)00120-0 0370-1573
  • Scoccimarro, R., Cosmological perturbations: Entering the nonlinear regime (1997) Astrophys. J., 487 (1), p. 1. , 10.1086/304578 0004-637X 1
  • Anselmi, S., Matarrese, S., Pietroni, M., Next-to-leading resummations in cosmological perturbation theory (2011) J. Cosmol. Astropart. Phys., 2011 (6), p. 015. , 1475-7516 015
  • Heitmann, K., Lawrence, E., Kwan, J., Habib, S., Higdon, D., The coyote universe extended: Precision emulation of the matter power spectrum (2014) Astrophys. J., 780 (1), p. 111. , 10.1088/0004-637X/780/1/111 0004-637X 111
  • Agarwal, S., Abdalla, F.B., Feldman, H.A., Lahav, O., Thomas, S.A., PkANN - II. A Non-linear Matter Power Spectrum Interpolator Developed Using Artificial Neural Networks
  • Fosalba, P., Crocce, M., Gaztanaga, E., Castander, F.J., The MICE Grand Challenge Lightcone Simulation I: Dark Matter Clustering
  • Crocce, M., Castander, F.J., Gaztanaga, E., Fosalba, P., Carretero, J., The MICE Grand Challenge Lightcone Simulation II: Halo and Galaxy Catalogues
  • Fosalba, P., Gaztanaga, E., Castander, F.J., Crocce, M., The MICE Grand Challenge Lightcone Simulation III: Galaxy Lensing Mocks from All-sky Lensing Maps

Citas:

---------- APA ----------
Anselmi, S., Nacir, D.L. & Sefusatti, E. (2014) . Nonlinear effects of dark energy clustering beyond the acoustic scales. Journal of Cosmology and Astroparticle Physics, 2014(7).
http://dx.doi.org/10.1088/1475-7516/2014/07/013
---------- CHICAGO ----------
Anselmi, S., Nacir, D.L., Sefusatti, E. "Nonlinear effects of dark energy clustering beyond the acoustic scales" . Journal of Cosmology and Astroparticle Physics 2014, no. 7 (2014).
http://dx.doi.org/10.1088/1475-7516/2014/07/013
---------- MLA ----------
Anselmi, S., Nacir, D.L., Sefusatti, E. "Nonlinear effects of dark energy clustering beyond the acoustic scales" . Journal of Cosmology and Astroparticle Physics, vol. 2014, no. 7, 2014.
http://dx.doi.org/10.1088/1475-7516/2014/07/013
---------- VANCOUVER ----------
Anselmi, S., Nacir, D.L., Sefusatti, E. Nonlinear effects of dark energy clustering beyond the acoustic scales. J. Cosmol. Astroparticle Phys. 2014;2014(7).
http://dx.doi.org/10.1088/1475-7516/2014/07/013