Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources. © 2013 IOP Publishing Ltd and Sissa Medialab srl.

Registro:

Documento: Artículo
Título:Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory
Autor:Multitudinario:508
Filiación:Centro Atómico Bariloche, Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF, CONICET, Argentina
Departamento de Física, FCEyN, Universidad de Buenos Aires y CONICET, Argentina
IFLP, Universidad Nacional de la Plata, CONICET, La Plata, Argentina
Instituto de Astronomá́ y Física Del Espacio (CONICET-UBA), Buenos Aires, Argentina
Instituto de Física de Rosario (IFIR), CONICET/U.N.R., Facultad de Ciencias Bioquímicas y Farmacéuticas U.N.R., Rosario, Argentina
Instituto de Tecnologá́s en Detección y Astropartículas, Buenos Aires, Argentina
National Technological University, Faculty Mendoza (CONICET/CNEA), Mendoza, Argentina
Observatorio Pierre Auger, Malargüe, Argentina
Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina
Universidad Tecnológica Nacional, Facultad Regional Buenos Aires, Buenos Aires, Argentina
University of Adelaide, Adelaide, SA, Australia
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ, Brazil
Universidade de São Paulo, Instituto de Física, São Carlos, SP, Brazil
Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
Universidade Estadual de Feira de Santana, Brazil
Universidade Federal da Bahia, Salvador, BA, Brazil
Universidade Federal Do ABC, Santo André, SP, Brazil
Universidade Federal Do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
Universidade Federal Fluminense, EEIMVR, Volta Redonda, RJ, Brazil
Rudjer Bošković Institute, 10000 Zagreb, Croatia
Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Palacky University, RCPTM, Olomouc, Czech Republic
Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay, France
Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris 11, CNRS-IN2P3, France
Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris, France
Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier Grenoble, CNRS-IN2P3, France
Station de Radioastronomie de Nanćay, Observatoire de Paris, CNRS/INSU, France
SUBATECH, École des Mines de Nantes, Université de Nantes, France
Bergische Universität Wuppertal, Wuppertal, Germany
Karlsruhe Institute of Technology - Campus North, Institut für Kernphysik, Karlsruhe, Germany
Karlsruhe Institute of Technology - Campus North, Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany
Karlsruhe Institute of Technology - Campus South, Institut für Experimentelle Kernphysik (IEKP), Karlsruhe, Germany
Max-Planck-Institut für Radioastronomie, Bonn, Germany
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
Universität Hamburg, Hamburg, Germany
Universität Siegen, Siegen, Germany
Dipartimento di Fisica dell'Universitá, INFN, Genova, Italy
Universitá dell'Aquila, INFN, L'Aquila, Italy
Universitá di Milano, Sezione INFN, Milan, Italy
Universitá di Napoli Federico II, Sezione INFN, Napoli, Italy
Universitá di Roma II Tor Vergata, Sezione INFN, Roma, Italy
Universitá di Catania, Sezione INFN, Catania, Italy
Universitá di Torino, Sezione INFN, Torino, Italy
Dipartimento di Matematica e Fisica E. de Giorgi, Universitá Del Salento, Sezione INFN, Lecce, Italy
Istituto di Astrošica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
Istituto di Fisica Dello Spazio Interplanetario (INAF), Universitá di Torino, Sezione INFN, Torino, Italy
INFN, Laboratori Nazionali Del Gran Sasso, Assergi (L'Aquila), Italy
Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Mexico
Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan, Mexico
Universidad Nacional Autonoma de Mexico, Mexico, D.F., Mexico
IMAPP, Radboud University Nijmegen, Netherlands
Kernfysisch Versneller Instituut, University of Groningen, Groningen, Netherlands
Nikhef, Science Park, Amsterdam, Netherlands
ASTRON, Dwingeloo, Netherlands
Institute of Nuclear Physics PAN, Krakow, Poland
University of Lódź, Lódź, Poland
LIP, Instituto Superior Técnico, Technical University of Lisbon, Portugal
'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
University of Bucharest, Physics Department, Romania
University Politehnica of Bucharest, Romania
J. Stefan Institute, Ljubljana, Slovenia
Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia
Institut de Física Corpuscular, CSIC, Universitat de Valéncia, Valencia, Spain
Universidad Complutense de Madrid, Madrid, Spain
Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
Universidad de Granada, C.A.F.P.E., Granada, Spain
Universidad de Santiago de Compostela, Spain
School of Physics and Astronomy, University of Leeds, United Kingdom
Argonne National Laboratory, Argonne, IL, United States
Case Western Reserve University, Cleveland, OH, United States
Colorado School of Mines, Golden, CO, United States
Colorado State University, Fort Collins, CO, United States
Colorado State University, Pueblo, CO, United States
Fermilab, Batavia, IL, United States
Los Alamos National Laboratory, Los Alamos, NM, United States
Louisiana State University, Baton Rouge, LA, United States
Michigan Technological University, Houghton, MI, United States
New York University, New York, NY, United States
Northeastern University, Boston, MA, United States
Ohio State University, Columbus, OH, United States
Pennsylvania State University, University Park, PA, United States
University of Chicago, Enrico Fermi Institute, Chicago, IL, United States
University of Hawaii, Honolulu, HI, United States
University of Nebraska, Lincoln, NE, United States
University of New Mexico, Albuquerque, NM, United States
University of Wisconsin, Madison, WI, United States
University of Wisconsin, Milwaukee, WI, United States
Institute for Nuclear Science and Technology (INST), Hanoi, Viet Nam
Konan University, Japan
Universidad Autonoma, Spain
University of Maryland, United States
NYU Abu Dhabi, United Arab Emirates
Palabras clave:cosmic ray experiments; ultra high energy cosmic rays
Año:2013
Volumen:2013
Número:2
DOI: http://dx.doi.org/10.1088/1475-7516/2013/02/026
Título revista:Journal of Cosmology and Astroparticle Physics
Título revista abreviado:J. Cosmol. Astroparticle Phys.
ISSN:14757516
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14757516_v2013_n2_p_Multitudinario

Referencias:

  • Engel, R., Heck, D., Pierog, T., Extensive air showers and hadronic interactions at high energy (2011) Ann. Rev. Nucl. Part. Sci., 61, p. 467. , 10.1146/annurev.nucl.012809.104544 0163-8998
  • Gaisser, T.K., (1990) Cosmic Rays and Particle Physics
  • Linsley, J., (1983) Spectra, Anisotropies and Composition of Cosmic Rays above 1000 GeV, 12, p. 135
  • Linsley, J., (1985) Proton-air and Proton-proton Cross Sections from Air Shower Data, 6, p. 1
  • Abraham, J., Measurement of the Depth of Maximum of Extensive Air Showers above 1018 eV (2010) Phys. Rev. Lett., 104, p. 091101. , 10.1103/PhysRevLett.104.091101, Pierre Auger collaboration
  • Facal San Luis, P., (2011) The Distribution of Shower Maxima of UHECR Air Showers, 2, p. 225. , Pierre Auger collaboration
  • Abreu, P., The Pierre Auger Observatory II: Studies of Cosmic Ray Composition and Hadronic Interaction Models, , Pierre Auger collaboration
  • Matthews, J., A Heitler model of extensive air showers (2005) Astropart. Phys., 22, p. 387. , 10.1016/j.astropartphys.2004.09.003 0927-6505
  • Linsley, J., (1977) Structure of Large Air Showers at Depth 834 g/cm2, 12, p. 89
  • Gaisser, T.K., (1979) Elongation Rate of Air Showers and Implications for 1017-1018 EV Particle Interactions, 9, p. 275
  • Linsley, J., Watson, A., Validity of scaling to 1020-eV and high-energy cosmic ray composition (1981) Phys. Rev. Lett., 46, p. 459. , 10.1103/PhysRevLett.46.459 0031-9007
  • Pierog, T., Werner, K., Muon Production in Extended Air Shower Simulations (2008) Phys. Rev. Lett., 101, p. 171101. , 10.1103/PhysRevLett.101.171101
  • Ahn, E.-J., Engel, R., Gaisser, T.K., Lipari, P., Stanev, T., Cosmic ray interaction event generator SIBYLL 2.1 (2009) Phys. Rev., 80, p. 094003. , 10.1103/PhysRevD.80.094003 0556-2821 D
  • Kalmykov, N., Ostapchenko, S., Pavlov, A., Quark-gluon string model and EAS simulation problems at ultra-high energies (1997) Nucl. Phys. Proc. Suppl., 52, p. 17. , 10.1016/S0920-5632(96)00846-8 0920-5632
  • Ostapchenko, S., Non-linear screening effects in high energy hadronic interactions (2006) Phys. Rev., 74, p. 014026. , 10.1103/PhysRevD.74.014026 0556-2821 D
  • Pierog, T., Alekseeva, M., Bergmann, T., Chernatkin, V., Engel, R., First results of fast one-dimensional hybrid simulation of EAS using CONEX (2006) Nucl. Phys. Proc. Suppl., 151, p. 159. , 10.1016/j.nuclphysBPS.2005.07.029 0920-5632
  • Bird, D., Evidence for correlated changes in the spectrum and composition of cosmic rays at extremely high-energies (1993) Phys. Rev. Lett., 71, p. 3401. , 10.1103/PhysRevLett.71.3401 0031-9007, HIRES collaboration
  • Abbasi, R., A Study of the composition of ultrahigh energy cosmic rays using the High Resolution Fly's Eye (2005) Astrophys. J., 622 (2), p. 910. , 10.1086/427931 0004-637X 910. High Resolution Fly's Eye collaboration
  • Abbasi, R., Indications of Proton-Dominated Cosmic Ray Composition above 1.6 EeV (2010) Phys. Rev. Lett., 104, p. 161101. , 10.1103/PhysRevLett.104.161101, HiRes collaboration
  • Knurenko, S., Sabourov, A., (2011) Spectrum and Mass Composition of Cosmic Rays in the Energy Range 1015 - 1018 EV Derived from the Yakutsk Array Data, 1, p. 189
  • Jui, C.C., Cosmic Ray in the Northern Hemisphere: Results from the Telescope Array Experiment (2011) Proc. APS DPF Meeting, Providence, RI, U.S.A., J. Phys. Conf. Ser., 404, p. 012037. , 10.1088/1742-6596/404/1/012037 1742-6596
  • Walker, R., Watson, A., Measurement of the fluctuations in the depth of maximum of showers produced by primary particles of energy greater than 1.5× 1017 eV (1982) J. Phys., 8 (8), p. 1131. , 10.1088/0305-4616/8/8/016 0305-4616 G 016
  • Garcia-Pinto, D., (2011) Measurements of the Longitudinal Development of Air Showers with the Pierre Auger Observatory, 2, p. 87. , Pierre Auger collaboration
  • Abreu, P., The Pierre Auger Observatory II: Studies of Cosmic Ray Composition and Hadronic Interaction Models, , Pierre Auger collaboration
  • http://www.auger.org/technical_info/ICRC2011/shower_development_data.txt; Unger, M., (2011) EAS Studies of Cosmic Rays above 1016 EV, 12, p. 225
  • Cazon, L., Ulrich, R., The non-linearity between 〈ln A〉 and 〈Xmax〉 induced by the acceptance of fluorescence telescopes (2012) Astropart. Phys., 38, p. 41. , 10.1016/j.astropartphys.2012.09.001 0927-6505
  • Pesce, R., (2011) Energy Calibration of Data Recorded with the Surface Detectors of the Pierre Auger Observatory: An Update, 2, p. 214. , Pierre Auger collaboration
  • Abreu, P., The Pierre Auger Observatory I: The Cosmic Ray Energy Spectrum and Related Measurements, , Pierre Auger collaboration
  • Abreu, P., Measurement of the proton-air cross-section at s1/2=57 TeV with the Pierre Auger Observatory (2012) Phys. Rev. Lett., 109, p. 062002. , 10.1103/PhysRevLett.109.062002, Pierre Auger collaboration
  • Watson, A., Wilson, J., Fluctuation studies of large air showers - The composition of primary cosmic ray particles of energy E p ∼ 10 18 eV (1974) J. Phys., 7 (10), p. 1199. , 10.1088/0305-4470/7/10/013 0301-0015 A 013
  • Walker, R., Watson, A., Measurement of the elongation rate of extensive air showers produced by primary cosmic rays of energy above 2× 10 17 eV (1981) J. Phys., 7 (9), p. 1297. , 10.1088/0305-4616/7/9/021 0305-4616 G 021
  • Kampert, K.-H., Unger, M., Measurements of the Cosmic Ray Composition with Air Shower Experiments (2012) Astropart. Phys., 35, p. 660. , 10.1016/j.astropartphys.2012.02.004 0927-6505
  • Taylor, A.M., Ahlers, M., Aharonian, F.A., The need for a local source of UHE CR nuclei (2011) Phys. Rev., 84, p. 105007. , 10.1103/PhysRevD.84.105007 0556-2821 D
  • Allard, D., Extragalactic propagation of ultrahigh energy cosmic-rays (2012) Astropart. Phys., 39-40, p. 33. , 10.1016/j.astropartphys.2011.10.011 0927-6505
  • Allen, J., (2011) Interpretation of the Signals Produced by Showers from Cosmic Rays of 1019 EV Observed in the Surface Detectors of the Pierre Auger Observatory, 2, p. 83. , Pierre Auger collaboration
  • Abreu, P., The Pierre Auger Observatory II: Studies of Cosmic Ray Composition and Hadronic Interaction Models, , Pierre Auger collaboration
  • Rodriguez, G., (2011) Reconstruction of Inclined Showers at the Pierre Auger Observatory: Implications for the Muon Contenty, 2, p. 95. , Pierre Auger collaboration
  • Abreu, P., The Pierre Auger Observatory I: The Cosmic Ray Energy Spectrum and Related Measurements, , Pierre Auger collaboration
  • Nelson, W., (1985) The Egs4 Code System, SLAC-265
  • Fesefeldt, H., (1985) RWTH Aachen Report PITHA 85/2

Citas:

---------- APA ----------
(2013) . Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory. Journal of Cosmology and Astroparticle Physics, 2013(2).
http://dx.doi.org/10.1088/1475-7516/2013/02/026
---------- CHICAGO ----------
Multitudinario:508. "Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory" . Journal of Cosmology and Astroparticle Physics 2013, no. 2 (2013).
http://dx.doi.org/10.1088/1475-7516/2013/02/026
---------- MLA ----------
Multitudinario:508. "Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory" . Journal of Cosmology and Astroparticle Physics, vol. 2013, no. 2, 2013.
http://dx.doi.org/10.1088/1475-7516/2013/02/026
---------- VANCOUVER ----------
Multitudinario:508. Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory. J. Cosmol. Astroparticle Phys. 2013;2013(2).
http://dx.doi.org/10.1088/1475-7516/2013/02/026