Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Inflation plays a central role in our current understanding of the universe. According to the standard viewpoint, the homogeneous and isotropic mode of the inflaton field drove an early phase of nearly exponential expansion of the universe, while the quantum fluctuations (uncertainties) of the other modes gave rise to the seeds of cosmic structure. However, if we accept that the accelerated expansion led the universe into an essentially homogeneous and isotropic space-time, with the state of all the matter fields in their vacuum (except for the zero mode of the inflaton field), we can not escape the conclusion that the state of the universe as a whole would remain always homogeneous and isotropic. It was recently proposed in [A. Perez, H. Sahlmann and D. Sudarsky, "On the quantum origin of the seeds of cosmic structure", Class. Quant. Grav. 23 (2006) 2317-2354] that a collapse (representing physics beyond the established paradigm, and presumably associated with a quantum-gravity effect à la Penrose) of the state function of the inflaton field might be the missing element, and thus would be responsible for the emergence of the primordial inhomogeneities. Here we will discuss a formalism that relies strongly on quantum field theory on curved space-times, and within which we can implement a detailed description of such a process. The picture that emerges clarifies many aspects of the problem, and is conceptually quite transparent. Nonetheless, we will find that the results lead us to argue that the resulting picture is not fully compatible with a purely geometric description of space-time. © 2012 IOP Publishing Ltd and Sissa.

Registro:

Documento: Artículo
Título:Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure
Autor:Diez-Tejedor, A.; Sudarsky, D.
Filiación:Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., A.P. 70-543, México D.F. 04510, Mexico
Departamento de Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, León 37150, Mexico
Instituto de Astronomía y Física Del Espacio, Casilla de Correos 67 Sucursal 28, Buenos Aires 1428, Argentina
Palabras clave:Alternatives to inflation; physics of the early universe; quantum field theory on curved space
Año:2012
Volumen:2012
Número:7
DOI: http://dx.doi.org/10.1088/1475-7516/2012/07/045
Título revista:Journal of Cosmology and Astroparticle Physics
Título revista abreviado:J. Cosmol. Astroparticle Phys.
ISSN:14757516
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14757516_v2012_n7_p_DiezTejedor

Referencias:

  • Peacock, J.A., (1998) Cosmological Physics, , Cambridge University Press, Cambridge U.K. 10.1017/CBO9780511804533
  • Liddle, A.R., Lyth, D.H., (2000) Cosmological Inflation and Large-scale Structure, , Cambridge University Press, Cambridge U.K. 10.1017/CBO9781139175180
  • Dodelson, S., (2003) Modern Cosmology, , Academic Press, Amsterdam Netherlands
  • Padmanabhan, T., (1993) Structure Formation in the Universe, , Cambridge University Press, Cambridge U.K
  • Mukhanov, V.F., (2005) Physical Foundations of Cosmology, , 10.1017/CBO9780511790553 Cambridge University Press, Cambridge U.K
  • Weinberg, S., (2008) Cosmology, , Oxford University Press, Oxford U.K
  • Lyth, D.H., Liddle, A.R., (2009) The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure, , 10.1017/CBO9780511819209 Cambridge University Press, Cambridge U.K
  • Guth, A.H., The inflationary universe: A possible solution to the horizon and flatness problems (1981) Phys. Rev., 23, p. 347. , 10.1103/PhysRevD.23.347 0556-2821 D
  • Linde, A.D., A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems (1982) Phys. Lett., 108, p. 389. , 10.1016/0370-2693(82)91219-9 0370-2693 B
  • Albrecht, A., Steinhardt, P.J., Cosmology for grand unified theories with radiatively induced symmetry breaking (1982) Phys. Rev. Lett., 48, p. 1220. , 10.1103/PhysRevLett.48.1220 0031-9007
  • Starobinsky, A.A., A new type of isotropic cosmological models without singularity (1980) Phys. Lett., 91, p. 99. , 10.1016/0370-2693(80)90670-X 0370-2693 B
  • Hawking, S.W., The development of irregularities in a single bubble inflationary universe (1982) Phys. Lett., 115, p. 295. , 10.1016/0370-2693(82)90373-2 0370-2693 B
  • Starobinsky, A.A., Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations (1982) Phys. Lett., 117, p. 175. , 10.1016/0370-2693(82)90541-X 0370-2693 B
  • Guth, A.H., Pi, S.Y., Fluctuations in the new inflationary universe (1982) Phys. Rev. Lett., 49, p. 1110. , 10.1103/PhysRevLett.49.1110 0031-9007
  • Bardeen, J.M., Steinhardt, P.J., Turner, M.S., Spontaneous creation of almost scale-free density perturbations in an inflationary universe (1983) Phys. Rev., 28, p. 679. , 10.1103/PhysRevD.28.679 0556-2821 D
  • Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H., Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions (1992) Phys. Rept., 215, p. 203. , 10.1016/0370-1573(92)90044-Z 0370-1573
  • Perez, A., Sahlmann, H., Sudarsky, D., On the quantum origin of the seeds of cosmic structure (2006) Classical and Quantum Gravity, 23 (7), pp. 2317-2354. , DOI 10.1088/0264-9381/23/7/008, PII S0264938106132256
  • Sudarsky, D., Shortcomings in the understanding of why cosmological perturbations look classical (2011) Int. J. Mod. Phys., 20, p. 509. , 10.1142/S0218271811018937 0218-2718 D
  • Penrose, R., (2004) The Road to Reality: A Complete Guide to the Laws of the Universe
  • De Unánue, A., Sudarsky, D., Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure (2008) Phys. Rev., 78, p. 043510. , 10.1103/PhysRevD.78.043510 0556-2821 D
  • León, G., Sudarsky, D., The slow roll condition and the amplitude of the primordial spectrum of cosmic fluctuations: Contrasts and similarities of standard account and the 'collapse scheme' (2010) Class. Quant. Grav., 27 (22), p. 225017. , 10.1088/0264-9381/27/22/225017 0264-9381 225017
  • León, G., De Unánue, A., Sudarsky, D., Multiple quantum collapse of the inflaton field and its implications on the birth of cosmic structure (2011) Class. Quant. Grav., 28 (15), p. 155010. , 10.1088/0264-9381/28/15/155010 0264-9381 155010
  • Diez-Tejedor, A., León, G., Sudarsky, D., The Collapse of the Wave Function in the Joint Metric-matter Quantization for Inflation
  • Sudarsky, D., A signature of quantum gravity at the source of the seeds of cosmic structure? (2007) J. Phys. Conf. Ser., 67 (1), p. 012054. , 10.1088/1742-6596/67/1/012054 1742-6596 012054
  • Sudarsky, D., The seeds of cosmic structure as a door to new physics (2007) J. Phys. Conf. Ser., 68 (1), p. 012029. , 10.1088/1742-6596/68/1/012029 1742-6596 012029
  • Bassi, A., Ghirardi, G.C., Dynamical reduction models (2003) Physics Reports, 379 (5-6), pp. 257-426. , DOI 10.1016/S0370-1573(03)00103-0, PII S0370157303001030
  • Penrose, R., On gravity's role in quantum state reduction (1996) Gen. Rel. Grav., 28, p. 581. , 10.1007/BF02105068 0001-7701
  • Karolyhazy, F., Gravitation and quantum mechanics of macroscopic objects (1966) Nuovo Cim., 42, p. 390. , 10.1007/BF02717926 0369-3546 A
  • Diósi, L., Gravitation and quantum-mechanical localization of macro-objects (1984) Phys. Lett., 105, p. 199. , 10.1016/0375-9601(84)90397-9 0375-9601 A
  • Diósi, L., A universal master equation for the gravitational violation of quantum mechanics (1987) Phys. Lett., 120, p. 377. , 10.1016/0375-9601(87)90681-5 0375-9601 A
  • Diósi, L., Models for universal reduction of macroscopic quantum fluctuations (1989) Phys. Rev., 40, p. 1165. , 10.1103/PhysRevA.40.1165 A
  • Ghirardi, G.C., Rimini, A., Weber, T., A unified dynamics for micro and macro systems (1986) Phys. Rev., 34, p. 470. , 10.1103/PhysRevD.34.470 0556-2821 D
  • Pearle, P.M., Combining stochastic dynamical state vector reduction with spontaneous localization (1989) Phys. Rev., 39, p. 2277. , 10.1103/PhysRevA.39.2277 A
  • Wald, R.M., (1984) General Relativity
  • Colella, R., Overhauser, A.W., Werner, S., Observation of gravitationally induced quantum interference (1975) Phys. Rev. Lett., 34, p. 1472. , 10.1103/PhysRevLett.34.1472 0031-9007
  • Chryssomalakos, C., Sudarsky, D., On the geometrical character of gravitation (2003) Gen. Rel. Grav., 35, p. 605. , 10.1023/A:1022957916776 0001-7701
  • Sorkin, R.D., Impossible Measurements on Quantum Fields
  • Hartle, J.B., Quantum Cosmology: Problems for the 21st Century
  • Hartle, J.B., Glafka 2004: Generalizing quantum mechanics for quantum gravity (2006) International Journal of Theoretical Physics, 45 (8), pp. 1391-1397. , DOI 10.1007/s10773-006-9134-z, Special Glafka 2004 Conference Issue
  • Rovelli, C., (2007) Quantum Gravity
  • Bekenstein, J.D., Black holes and entropy (1973) Phys. Rev., 7, p. 2333. , 10.1103/PhysRevD.7.2333 0556-2821 D
  • Jacobson, T., Thermodynamics of space-time: The Einstein equation of state (1995) Phys. Rev. Lett., 75, p. 1260. , 10.1103/PhysRevLett.75.1260
  • Volovik, G.E., (2003) The Universe in A Helium Droplet
  • Padmanabhan, T., Gravity and the thermodynamics of horizons (2005) Physics Reports, 406 (2), pp. 49-125. , DOI 10.1016/j.physrep.2004.10.003, PII S0370157304004582
  • Hu, B.L., Can spacetime be a condensate? (2005) International Journal of Theoretical Physics, 44 (10), pp. 1785-1806. , DOI 10.1007/s10773-005-8895-0
  • Hu, B.L., Verdaguer, E., Stochastic gravity: Theory and applications (2008) Living Rev. Rel., 11, p. 3. , 1433-8351
  • Wald, R.M., (1994) Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics
  • Carlip, S., Is quantum gravity necessary? (2008) Class. Quant. Grav., 25 (15), p. 154010. , 10.1088/0264-9381/25/15/154010 0264-9381 154010
  • Scully, M.O., Zubairy, M.S., (1997) Quantum Optics
  • Harrison, R., Moroz, I., Tod, K.P., A Numerical Study of the Schrödinger-Newton Equation 1: Perturbing the Spherically-symmetric Stationary States
  • Harrison, R., (2001) A Numerical Study of the Schrödinger-Newton Equations
  • Salzman, P.J., Carlip, S., A Possible Experimental Test of Quantized Gravity
  • Salzman, P.J., (2005) Investigation of the Time Dependent Schrödinger-Newton Equation
  • Guzmán, F.S., Ureña-López, L.A., Newtonian collapse of scalar field dark matter (2003) Phys. Rev., 68, p. 024023. , 10.1103/PhysRevD.68.024023 0556-2821 D
  • Guzman, F.S., Urena-Lopez, L.A., Evolution of the Schrodinger-Newton system for a self-gravitating scalar field (2004) Physical Review D, 69 (12), p. 124033. , DOI 10.1103/PhysRevD.69.124033
  • Penrose, R., Quantum computation, entanglement and state reduction (1998) Phil. Trans. Roy. Soc. Lond., 356, p. 1927. , 10.1098/rsta.1998.0256 1364-503X A
  • Ashtekar, A., Bojowald, M., Quantum geometry and the Schwarzschild singularity (2006) Classical and Quantum Gravity, 23 (2), pp. 391-411. , DOI 10.1088/0264-9381/23/2/008, PII S0264938106085133
  • Birrell, N.D., Davies, P.C.W., (1984) Quantum Fields in Curved Space
  • Mukhanov, V.F., Winitzki, S., (2007) Introduction to Quantum Effects in Gravity
  • Parker, L., Toms, D., (2009) Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, , 10.1017/CBO9780511813924
  • Belinsky, V.A., Khalatnikov, I.M., Grishchuk, L.P., Zeldovich, Y.B., Inflationary stages in cosmological models with a scalar field (1985) Phys. Lett., 155, p. 232. , 10.1016/0370-2693(85)90644-6 0370-2693 B
  • Burnham, D.C., Weinberg, D.L., Observation of simultaneity in parametric production of optical photon pairs (1970) Phys. Rev. Lett., 25, p. 84. , 10.1103/PhysRevLett.25.84 0031-9007
  • Hong, C.K., Mandel, L., Theory of parametric frequency down conversion of light (1985) Phys. Rev., 31, p. 2409. , 10.1103/PhysRevA.31.2409 0556-2791 A
  • Dewitt, B.S., Quantum theory of gravity. I. The canonical theory (1967) Phys. Rev., 160, p. 1113. , 10.1103/PhysRev.160.1113
  • Wheeler, J.A., Superspace and the nature of quantum geometrodynamics (1968) Battelle Rencontres: 1967 Lectures in Mathematics and Physics, pp. 284-289
  • Rovelli, C., Relational quantum mechanics (1996) Int. J. Theor. Phys., 35 (8), p. 1637. , 10.1007/BF02302261 0020-7748
  • Hellwig, K.E., Kraus, K., Formal description of measurements in local quantum field theory (1970) Phys. Rev., 1, p. 566. , 10.1103/PhysRevD.1.566 0556-2821 D
  • Myrvold, W.C., On peaceful coexistence: Is the collapse postulate incompatible with relativity? (2002) Stud. Hist. Philos. Mod. Phys., 33 (3), p. 435. , 10.1016/S1369-8486(02)00004-3 1355-2198
  • Popescu, S., Rohrlich, D., Quantum Nonlocality as an Axiom (1994) Foundations of physics, 24 (3), p. 379
  • Hamber, H.W., Williams, R.M., Nonlocal effective gravitational field equations and the running of Newton's G (2005) Phys. Rev., 72, p. 044026. , 10.1103/PhysRevD.72.044026 0556-2821 D
  • Giddings, S.B., Black hole information, unitarity, and nonlocality (2006) Physical Review D - Particles, Fields, Gravitation and Cosmology, 74 (10), p. 106005. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevD.74.106005&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevD.74.106005
  • Durrer, R., Ruser, M., Dynamical casimir effect in braneworlds (2007) Physical Review Letters, 99 (7), p. 071601. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.99.071601&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.99.071601
  • Gambini, R., Pullin, J., Nonstandard optics from quantum space-time (1999) Phys. Rev., 59, p. 124021. , 10.1103/PhysRevD.59.124021 0556-2821 D
  • Alfaro, J., Morales-Técotl, H.A., Urrutia, L.F., Quantum gravity corrections to neutrino propagation (2000) Phys. Rev. Lett., 84, p. 2318. , 10.1103/PhysRevLett.84.2318
  • Alfaro, J., Morales-Tecotl, H.A., Urrutia, L.F., Loop quantum gravity and light propagation (2002) Physical Review D, 65 (10), p. 103509. , DOI 10.1103/PhysRevD.65.103509
  • Alfaro, J., Quantum gravity and Lorentz invariance violation in the standard model (2005) Physical Review Letters, 94 (22), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:94, DOI 10.1103/PhysRevLett.94.221302, 221302
  • Alfaro, J., Quantum gravity induced Lorentz invariance violation in the standard model: Hadrons (2005) Phys. Rev., 72, p. 024027. , 10.1103/PhysRevD.72.024027 0556-2821 D
  • Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., Quantum gravitational diffusion and stochastic fluctuations in the velocity of light (2000) Gen. Rel. Grav., 32, p. 127. , 10.1023/A:1001852601248 0001-7701
  • Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., A microscopic recoil model for light cone fluctuations in quantum gravity (2000) Phys. Rev., 61, p. 027503. , 10.1103/PhysRevD.61.027503 0556-2821 D
  • Collins, J., Perez, A., Sudarsky, D., Urrutia, L., Vucetich, H., Lorentz invariance and quantum gravity: An additional fine-tuning problem? (2004) Phys. Rev. Lett., 93, p. 191301. , 10.1103/PhysRevLett.93.191301
  • Polchinski, J., Comment on 'Small Lorentz violations in quantum gravity: Do they lead to unacceptably large effects?' (2012) Class. Quant. Grav., 29 (8), p. 088001. , 10.1088/0264-9381/29/8/088001 0264-9381 088001
  • Israel, W., Singular hypersurfaces and thin shells in general relativity (1966) Nuovo Cim., 44, p. 1. , 10.1007/BF02710419 0369-3554 B
  • R.M. Wald, private communication; Isham, C.J., Canonical Quantum Gravity and the Problem of Time
  • Gambini, R., Porto, R., Pullin, J., A relational solution to the problem of time in quantum mechanics and quantum gravity induces a fundamental mechanism for quantum decoherence (2004) New J. Phys., 6 (1), p. 45. , 10.1088/1367-2630/6/1/045 1367-2630 045
  • Gambini, R., Pullin, J., Relational physics with real rods and clocks and the measurement problem of quantum mechanics (2007) Found. Phys., 37, p. 1074. , 10.1007/s10701-007-9144-6 0015-9018

Citas:

---------- APA ----------
Diez-Tejedor, A. & Sudarsky, D. (2012) . Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure. Journal of Cosmology and Astroparticle Physics, 2012(7).
http://dx.doi.org/10.1088/1475-7516/2012/07/045
---------- CHICAGO ----------
Diez-Tejedor, A., Sudarsky, D. "Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure" . Journal of Cosmology and Astroparticle Physics 2012, no. 7 (2012).
http://dx.doi.org/10.1088/1475-7516/2012/07/045
---------- MLA ----------
Diez-Tejedor, A., Sudarsky, D. "Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure" . Journal of Cosmology and Astroparticle Physics, vol. 2012, no. 7, 2012.
http://dx.doi.org/10.1088/1475-7516/2012/07/045
---------- VANCOUVER ----------
Diez-Tejedor, A., Sudarsky, D. Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure. J. Cosmol. Astroparticle Phys. 2012;2012(7).
http://dx.doi.org/10.1088/1475-7516/2012/07/045