Artículo

Meichtry, J.M.; Rivera, V.; Di Iorio, Y.; Rodríguez, H.B.; Román, E.S.; Grela, M.A.; Litter, M.I. "Photoreduction of Cr(vi) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2" (2009) Photochemical and Photobiological Sciences. 8(5):604-612
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Hydroxoaluminiumtricarboxymonoamide phthalocyanine (AlTCPc) adsorbed at different loadings on TiO2 Degussa P-25 was tested for Cr(vi) photocatalytic reduction under visible irradiation in the presence of 4-chlorophenol (4-CP) as sacrificial donor. A rapid reaction takes place in spite of the presumable aggregation of the dye on the TiO2 surface. The removal of Cr(vi) is fairly negligible under visible-light irradiation, either without photocatalyst or in the presence of bare TiO2. The fast capture of conduction band electrons by Cr(vi), which forms a surface complex with TiO2, inhibits the formation of reactive oxygen species in the reductive pathway. This fact and the easier oxidation of 4-CP as compared to AlTCPc hinder the photobleaching of the dye and make feasible Cr(vi) reduction under visible irradiation. The consumption of Cr(vi) follows a pseudo-first order kinetics; the decay constant depends, in the studied range, on the photocatalyst mass, but it is barely affected by dye loading. The presence of 4-CP is essential, but its concentration has no effect on the Cr(vi) decay rate. Oxidation products of 4-CP, such as hydroquinone, catechol or benzoquinone, are not observed. Direct evidence of the one-electron reduction of Cr(vi) to Cr(v) was obtained by EPR spectroscopy using citric acid as Cr(v) trapping agent. In this case, disappearance of Cr(v) also follows a first order decay, but conduction band electrons do not seem to be involved. The fact that oxidation products of 4-CP are not observed is consistent with the fast dark removal of reaction intermediates by Cr(v), proved by EPR. © The Royal Society of Chemistry and Owner Societies 2009.

Registro:

Documento: Artículo
Título:Photoreduction of Cr(vi) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2
Autor:Meichtry, J.M.; Rivera, V.; Di Iorio, Y.; Rodríguez, H.B.; Román, E.S.; Grela, M.A.; Litter, M.I.
Filiación:Gerencia Química, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, San Martín, Prov. de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Departamento de Química, Universidad Nacional de Mar Del Plata, Funes 3350, 7602, Mar del Plata, Argentina
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, 1428, Ciudad de Buenos Aires, Argentina
Instituto de Investigación e Ingeniería Ambiental, Universidad de Gral. San Martín, Peatonal Belgrano 3563 1er piso, 1650, San Martín, Prov. de Buenos Aires, Argentina
Palabras clave:4 chlorophenol; benzoquinone; catechol; chromium 51; citric acid; dye; hydroquinone; phthalocyanine derivative; reactive oxygen metabolite; titanium dioxide; adsorption; article; bleaching; chemical reaction; electron; electron spin resonance; heavy metal removal; irradiation; kinetics; light irradiance; oxidation; photocatalysis; priority journal
Año:2009
Volumen:8
Número:5
Página de inicio:604
Página de fin:612
DOI: http://dx.doi.org/10.1039/b816441j
Título revista:Photochemical and Photobiological Sciences
Título revista abreviado:Photochem. Photobiol. Sci.
ISSN:1474905X
CODEN:PPSHC
CAS:4 chlorophenol, 106-48-9; catechol, 120-80-9; chromium 51, 14392-02-0; citric acid, 126-44-3, 5949-29-1, 77-92-9, 8002-14-0; hydroquinone, 123-31-9; titanium dioxide, 1317-70-0, 1317-80-2, 13463-67-7, 51745-87-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v8_n5_p604_Meichtry

Referencias:

  • Kamat, P.V., Photochemistry on nonreactive and reactive (semiconductor) surfaces (1993) Chem. Rev., 93, pp. 267-300
  • Wade, J., (2005) An Investigation of TiO2-ZnFe2O4 Nanocomposites for Visible-light Photocatalysis, Master of Science in Electrical Engineering Thesis, Department of Electrical Engineering, College of Engineering, , University of South Florida
  • Hagfeldt, A., Grätzel, M., Light-induced redox reactions in nanocrystalline systems (1995) Chem. Rev., 95, pp. 49-68
  • Emeline, A.V., Kuzmin, G.N., Serpone, N., Wavelength-dependent photostimulated adsorption of molecular O 2 and H2 on second generation titania photocatalysts: The case of the visible-light-active N-doped TiO2 system (2008) Chem. Phys. Lett., 454, pp. 279-283
  • Kalyanasundaram, K., Grätzel, M., Pelizzetti, E., Interfacial electron transfer in colloidal metal and semiconductor dispersions and photodecomposition of water (1986) Coord. Chem. Rev., 69, pp. 57-125
  • Chatterjee, D., Dasgupta, S., Visible light induced photocatalytic degradation of organic pollutants (2005) Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6 (2-3), pp. 186-205. , DOI 10.1016/j.jphotochemrev.2005.09.001, PII S1389556705000316
  • Beranek, R., Kisch, H., Tuning the optical and photoelectrochemical properties of surface-modified TiO2 (2008) Photochem. Photobiol. Sci., 7, pp. 40-48
  • Liu, G., Wu, T., Zhao, J., Hidaka, H., Serpone, N., Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions (1999) Environmental Science and Technology, 33 (12), pp. 2081-2087. , DOI 10.1021/es9807643
  • Liu, G., Li, X., Zhao, J., Horikoshi, S., Hidaka, H., Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: An experimental and theoretical examination (2000) J. Mol. Catal. A, 153, pp. 221-229
  • Chen, C., Li, X., Ma, W., Zhao, J., Hidaka, H., Serpone, N., Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: A probe for the interfacial electron transfer process and reaction mechanism (2002) Journal of Physical Chemistry B, 106 (2), pp. 318-324. , DOI 10.1021/jp0119025
  • Ross, H., Bendig, J., Hecht, S., Sensitized photocatalytical oxidation of terbutylazine (1994) Sol. Energy Mater. Sol. Cells, 33, pp. 475-481
  • Iliev, V., Phthalocyanine-modified titania - Catalyst for photooxidation of phenols by irradiation with visible light (2002) J. Photochem. Photobiol. A., 151, pp. 195-199
  • Mele, G., Del Sole, R., Vasapollo, G., García López, E., Palmisano, L., Schiavello, M., Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(ii)-porphyrin or Cu(ii)-phthalocyanine (2003) J. Catal., 217, pp. 334-342
  • Chatterjee, D., Mahata, A., Demineralization of organic pollutants on the dye modified TiO 2 semiconductor particulate system using visible light (2001) Applied Catalysis B: Environmental, 33 (2), pp. 119-125. , DOI 10.1016/S0926-3373(01)00170-9, PII S0926337301001709
  • Chatterjee, D., Mahata, A., Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface (2002) J. Photochem. Photobiol. A, 153, pp. 199-204
  • Chatterjee, D., Mahata, A., Evidence of superoxide radical formation in the photodegradation of pesticide on the dye modified TiO2 surface using visible light (2004) J. Photochem. Photobiol. A, 165, pp. 19-23
  • Iliev, V., Tomova, D., Bilyarska, L., Prahov, L., Petrov, L., Phthalocyanine modified TiO2 or WO3-catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light (2003) Journal of Photochemistry and Photobiology A: Chemistry, 159 (3), pp. 281-287. , DOI 10.1016/S1010-6030(03)00170-9, PII S1010603003001709
  • Wang, C., Li, J., Mele, G., Yang, G.-M., Zhang, F.-X., Palmisano, L., Vasapollo, G., Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation (2007) Applied Catalysis B: Environmental, 76 (3-4), pp. 218-226. , DOI 10.1016/j.apcatb.2007.05.028, PII S0926337307001713
  • Hodak, J., Quinteros, C., Litter, M.I., San Roman, E., Sensitization of TiO2 with phthalocyanines: Part 1. - Photo-oxidations using hydroxoaluminium tricarboxymonoamidephthalocyanine adsorbed on TiO2 (1996) Journal of the Chemical Society - Faraday Transactions, 92 (24), pp. 5081-5088
  • Cho, Y., Choi, W., Lee, C.-H., Hyeon, T., Lee, H.-I., Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2 (2001) Environmental Science and Technology, 35 (5), pp. 966-970. , DOI 10.1021/es001245e
  • Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production (2007) Renewable and Sustainable Energy Reviews, 11 (3), pp. 401-425. , DOI 10.1016/j.rser.2005.01.009, PII S1364032105000420
  • Litter, M.I., Heterogeneous Photocatalysis. Transition metal ions in photocatalytic systems (1999) Appl. Catal. B, 23, pp. 89-114
  • Testa, J.J., Grela, M.A., Litter, M.I., Experimental evidence in favor of an initial one-electron-transfer process in the heterogeneous photocatalytic reduction of chromium(VI) over TiO2 (2001) Langmuir, 17 (12), pp. 3515-3517. , DOI 10.1021/la010100y
  • Testa, J.J., Grela, M.A., Litter, M.I., Heterogeneous Photocatalytic Reduction of Chromium(VI) over TiO 2 Particles in the Presence of Oxalate: Involvement of Cr(V) Species (2004) Environmental Science and Technology, 38 (5), pp. 1589-1594. , DOI 10.1021/es0346532
  • Meichtry, J.M., Brusa, M., Mailhot, G., Grela, M.A., Litter, M.I., Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over TiO2 particles: Relevance of Cr(V)-citrate complexes (2007) Applied Catalysis B: Environmental, 71 (1-2), pp. 101-107. , DOI 10.1016/j.apcatb.2006.09.002, PII S0926337306003845
  • Fu, H., Lu, G., Li, S., Adsorption and photo-induced reduction of Cr(VI) ion in C(VI)-4CP(4-chlorophenol) aqueous system in the presence of TiO2 as photocatalyst (1998) Journal of Photochemistry and Photobiology A: Chemistry, 114 (1), pp. 81-88. , PII S1010603098002056
  • Kyung, H., Lee, J., Choi, W., Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination (2005) Environmental Science and Technology, 39 (7), pp. 2376-2382. , DOI 10.1021/es0492788
  • Cho, Y., Kyung, H., Choi, W., Visible light activity of TiO2 for the photoreduction of CCl4 and Cr(VI) in the presence of nonionic surfactant (Brij) (2004) Applied Catalysis B: Environmental, 52 (1), pp. 23-32. , DOI 10.1016/j.apcatb.2004.03.013, PII S0926337304001766
  • Sun, B., Reddy, E.P., Smirniotis, P.G., Visible light Cr(VI) reduction and organic chemical oxidation by TiO 2 photocatalysis (2005) Environmental Science and Technology, 39 (16), pp. 6251-6259. , DOI 10.1021/es0480872
  • Di Iorio, Y., San Román, E., Litter, M.I., Grela, M.A., Photoinduced reactivity of strongly coupled TiO2 ligands under visible irradiation. An examination of Alizarin Red@TiO2 nanoparticulate system (2008) J. Phys. Chem. C., 112, pp. 16532-16538
  • Sun, A., Zhang, G., Xu, Y., Photobleaching of metal phthalocyanine sulfonates under UV and visible light irradiation over TiO2 semiconductor (2005) Mater. Lett., 59, pp. 4016-4019
  • Lagorio, M.G., Dicelio, L.E., San Román, E., Visible and near IR spectroscopical and photochemical characterization of substituted metallophthalocyanines (1993) J. Photochem. Photobiol. A, 72, pp. 153-161
  • Wegner, E.E., Adamson, A.W., Photochemistry of complex ions. III. Absolute, quantum yields for the photolysis of some aqueous chromium(III) complexes. Chemical actinometry in the long wavelength visible region (1966) J. Am. Chem. Soc., 88, pp. 394-404
  • Das Graças, M., Korn, A., Ferreira, A.C., Costa, A.C.S., Nóbrega, J.A., Silva, C.R., Comparison of decomposition procedures for analysis of titanium dioxide using inductively coupled plasma optical emission spectrometry (2002) Microchemical J., 71, pp. 41-48
  • Wendlandt, W.W., Hecht, H.G., (1966) Reflectance Spectroscopy, , Wiley, New York
  • Amore, S., Lagorio, M.G., Dicelio, L.E., San Román, E., Photophysical properties of supported dyes. Quantum yield calculations in scattering media (2001) Progr. Reaction Kinetics Mechan., 26, pp. 159-177
  • Baxendale, J.H., Bridge, N.K., Photoreduction of ferric compounds in aqueous solution (1955) J. Phys. Chem., 59, pp. 783-788
  • Lin, W.-Y., Wei, C., German, S., Rajeshwar, K., Photocatalytic reduction and immobilization of hexavalent chromium at titanium dioxide in aqueous basic media (1993) J. Electrochem. Soc., 140, pp. 2477-2482
  • P. Urone, APHA AWWA 1955, 1992. ASTM Standards D 1687-92, 1999; Snow, A.W., Barger In, W.R., (1989) Phthalocyanines, Properties and Applications, Ed., , C. C. Leznoff and A. B. P. Lever, VCH Publish., Inc., New York, p. 374
  • Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Roman, E., Modeling of fluorescence quantum yields of supported dyes: Aluminium carboxyphthalocyanine on cellulose (1998) Journal of the Chemical Society - Faraday Transactions, 94 (3), pp. 419-425
  • Martin, S.T., Herrmann, H., Hoffmann, M.R., Time-resolved microwave conductivity. Part 2.-Quantum-sized TiO 2 and the effect of adsorbates and light intensity on charge-carrier dynamics (1994) J. Chem. Soc., Faraday Trans., 90, pp. 3323-3330
  • Hug, S.J., Laubscher, H.-U., James, B.R., Iron(III) catalyzed photochemical reduction of chromium(VI) by oxalate and citrate in aqueous solutions (1997) Environmental Science and Technology, 31 (1), pp. 160-170. , DOI 10.1021/es960253l
  • Bard, A., Lund In, H., (1978) Encyclopedia of Electrochemistry of the Elements, , Marcel-Dekker, New York, XII-3, p. 413
  • Cawich, C.M., Ibrahim, A., Link, K.L., Bumgartner, A., Patro, M.D., Mahapatro, S.N., Lay, P.A., Eaton, G.R., Synthesis of a pyridinium bis[citrato(2-)]oxochromate(V) complex and its ligand-exchange reactions (2003) Inorg. Chem., 42, pp. 6458-6468
  • Colucci, J., Montalvo, V., Hernandez, R., Poullet, C., Electrochemical oxidation potential of photocatalyst reducing agents (1999) Electrochim. Acta, 44, pp. 2507-2514
  • Benson In, S.W., (1960) The Foundations of Chemical Kinetics, , McGraw-Hill Book Company, New York, pp. 33-34

Citas:

---------- APA ----------
Meichtry, J.M., Rivera, V., Di Iorio, Y., Rodríguez, H.B., Román, E.S., Grela, M.A. & Litter, M.I. (2009) . Photoreduction of Cr(vi) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2. Photochemical and Photobiological Sciences, 8(5), 604-612.
http://dx.doi.org/10.1039/b816441j
---------- CHICAGO ----------
Meichtry, J.M., Rivera, V., Di Iorio, Y., Rodríguez, H.B., Román, E.S., Grela, M.A., et al. "Photoreduction of Cr(vi) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2" . Photochemical and Photobiological Sciences 8, no. 5 (2009) : 604-612.
http://dx.doi.org/10.1039/b816441j
---------- MLA ----------
Meichtry, J.M., Rivera, V., Di Iorio, Y., Rodríguez, H.B., Román, E.S., Grela, M.A., et al. "Photoreduction of Cr(vi) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2" . Photochemical and Photobiological Sciences, vol. 8, no. 5, 2009, pp. 604-612.
http://dx.doi.org/10.1039/b816441j
---------- VANCOUVER ----------
Meichtry, J.M., Rivera, V., Di Iorio, Y., Rodríguez, H.B., Román, E.S., Grela, M.A., et al. Photoreduction of Cr(vi) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2. Photochem. Photobiol. Sci. 2009;8(5):604-612.
http://dx.doi.org/10.1039/b816441j